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Abstract: We study the L2 → L∞ norms of spectral projections and spec-
tral multipliers of left-invariant elliptic and subelliptic second-order differential
operators on homogeneous Lie groups. We obtain a precise description of the
L2 → L∞ norms of spectral multipliers for some class of operators which we call
quasi-homogeneous. As an application we prove a stronger version of Alexopoulos’
spectral multiplier theorem for this class of operators.

1 Introduction

Let G be a nilpotent Lie group with Lie algebra g. For a system X1, . . . , Xk ∈
g of left-invariant vector fields on G satisfying Hörmander’s condition we
define an operator L by the formula

L = −
k∑

i=1

X2
i . (1)

It is well known that the closure of the operator L in L2(G) is self-adjoint.
Thus it admits a spectral resolution

L =
∫ ∞

0
λdEL(λ).

For any bounded Borel function F we define an operator F (L) by the formula

F (L) =
∫ ∞

0
F (λ)dEL(λ).

By KF (L) we denote the kernel of the operator F (L), i.e. a distribution such
that

F (L)ψ = ψ ∗KF (L). (2)
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In the present paper we investigate the L2(G) → L∞(G) norms of spectral
multipliers of operator L

‖F (L)‖2
L1→L2 = ‖F (L)‖2

L2→L∞ = ‖KF (L)‖2
L2 . (3)

In the case of elliptic differential and pseudo-differential self-adjoint operators
on a compact manifold M the L2 → L∞ norms of spectral multipliers were
investigated by Hörmander [10], [9], by Sogge [16], [17], [18] and by Christ and
Sogge in [3]. In [9] Hörmander proved that if χ[a,b) denotes the characteristic
function of an interval [a, b) and P is a self-adjoint elliptic differential operator
of order m then (see Lemma 4.3 p. 211 [10])

‖χ[(k−1)m,km)(P )‖2
L2→L∞ ≤ Ckd−1, (4)

where d is the dimension of the manifold M . In [18] Sogge proved even more
precise estimates for spectral projectors of an elliptic differential operator of
second order P (see Lemma 2.2 [16]),

‖χ[(k−1)2,k2)(P )‖Lp→L2 ≤ Ckα(p), (5)

for each 1 ≤ p < 2 such that 1/p − 1/2 ≥ 1/(d + 1), where α(p) =
max{0, d|1/p − 1/2| − 1/2}. In [3] Christ and Sogge proved that if P is
a first order elliptic self-adjoint pseudo-differential operator on a compact
manifold with positive eigenvalues then

‖χ[k−1,k)(P )‖2
L2→L∞ ≤ Ckd−1. (6)

The estimates (4),(5) and (6) are used in the above papers to obtain sev-
eral results concerning the convergence in Lp(M) of Riesz’ means for P and
spectral multiplier theorems for the operator P .

In the case of operators on unimodular Lie groups a useful way of de-
scribing the L2 → L∞ norm of spectral multipliers and projections is the
following analogue of Plancherel’s measure (compare Proposition 3 [2]).

Lemma 1 If we define the measure dµL by the formula∫ ∞

0
F (λ) dµL(λ) =

∫ ∞

0
F (λ)e−2λd(E(λ)p1, p1),

then

‖F (L)‖2
L1→L2 = ‖F (L)‖2

L2→L∞ = ‖KF (L)‖2
L2 =

∫
R
|F (λ)|2 dµL(λ), (7)

where pt is the heat kernel corresponding to the self-adjoint elliptic left-
invariant operator L, i.e. pt = Kexp(−tL).
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Proof.

‖KF (L)(y, ·)‖L2 =
∫
d(E(λ)KF (L), KF (L))

=
∫
e2λ d(E(λ) exp(−L)(KF (L)), exp(−L)(KF (L))) =

=
∫
e2λ d(E(λ)F (L)(p1), F (L)(p1)) =∫

|F (λ)|2e2λ d(E(λ)p1, p1).

Following Christ [2] and Alexopoulos [1] we will call the measure dµL the
Plancherel measure of the operator L.

Now let G be a nilpotent homogeneous Lie group with Lie algebra g and
let δt: G→ G for t > 0 be a family of dilations of the groupG. (We refer to [6]
for the definition of a homogeneous group and dilations.) For homogeneous
groups the exponential mapping identifies G with its Lie algebra g, so we
may regard the δt instead as maps from g into itself. They are Lie algebra
automorphisms. Next for an arbitrary function ψ on G and t > 0 we set

δ̄tψ(x) = ψ(δtx).

We say that an operator L of the form (1) is homogeneous if

L ◦ δ̄t = t2δ̄t ◦ L,

or equivalently, if there are vectors X1, . . . , Xk such that

L = −
k∑

i=1

X2
i (8)

and
δtXi = tXi for i = 1, . . . , k.

An operator L will be called quasi-homogeneous if there exist vectorsX1, . . . , Xk

such that L is defined by (8) and

δtXi = tdiXi for i = 1, . . . , k, (9)

where 1 ≤ d1 ≤ . . . ≤ dk. It is not difficult to compute the Plancherel
measure and therefore also obtain a precise description of the L2 → L∞

norms of spectral projectors and multipliers for a homogeneous operator. In
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[2] Christ shows that if L is a homogeneous operator defined by (1) then for
some constant C (Proposition 3 [2])

dµL(λ) = CλQ/2−1dλ, (10)

where Q is the homogeneous dimension of the group G. Christ applied (10)
in the proof of the multiplier theorem for the operator L (Theorem 1 [2]).
In the present paper we prove that for ’quasi-homogeneous’ operators the
Plancherel measure has smooth density satisfying estimates similar to that
in (10).

In [1] Alexopoulos obtained a multiplier theorem for all second order
sub-elliptic operators on Lie groups of polynomial growth. However, Alex-
opoulos’ theorem applied to a homogeneous operator gives a weaker result
then Christ’s multiplier theorem. Alexopoulos suggested that he lost some
exponents in his work because of lack of an analogue of equation (10) for the
Plancherel measure for the investigated operators. Indeed, as an application
we will use our estimates for the Plancherel measure of quasi-homogeneous
operators to obtain a stronger version Alexopoulos’ multiplier theorem for
such operators.

2 Smoothness of the density of Plancherel

measure for quasi-homogeneous operators

For every operator L defined by (1) on a nilpotent Lie group there exist
natural numbers d and D such that

‖pt/2‖2
L2 = pt(e) ∼

{
t−d/2 if t ≤ 1
t−D/2 if t > 1.

(11)

E.g., see [20]. Following [20] we will call d and D the dimension of the heat
kernel at zero and at infinity, respectively. If group G is simply connected
then d ≤ D, see [20] Chapter IV.5. Every homogeneous group is simply
connected, thus d ≤ D for all operators which we investigate here. Note that
if the heat kernel corresponding to an operator L satisfies (11) then

µL([0, r)) ≤ e
∫ r

0
dµL(λ) e−λr−1

≤ e
∫ ∞

0
dµL(λ) e−λr−1

= e ‖p 1
r
(e)‖2

L2 ≤ C (rd/2 ∧ rD/2). (12)
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In case of quasi-homogeneous operators we can prove much sharper estimates.
Following improvement of (12) is the main result of this paper.

Theorem 1 Suppose that the operator L defined by (8) is quasi-homoge-
neous. Then the measure µL is absolutely continuous with respect to the
Lebesgue measure dλ

dµL = α(λ)dλ.

The function α : R+ → R is smooth and

|d
nα

dλn
(λ)| ≤ Cn

{
λd/2−(n+1) if λ ≤ 1
λD/2−(n+1) if λ > 1.

(13)

We divide the proof of Theorem 1 into a few lemmas. First for complex
numbers ai, i = 1, . . . , k such that Re ai > 0, we define operator La1,...,ak by
the formula

La1,...,ak =
k∑

i=1

aiX
2
i .

Of course L1,...,1 = L. In virtue of Proposition 3.7 and Theorem 4.1 [5]
the operator La1,...,ak generates a semigroup on Lp for all 1 ≤ p ≤ ∞. By
P a1,...,ak

t we will denote the semigroup generated by the operator La1,...,ak and
by pa1,...,ak

t we will denote the kernel of the operator P a1,...,ak
t . It is proved

in [5] (Theorem 4.1) that pa1,...,ak
t ∈ C∞(G) and that for some constants

a, b, ω > 0

|pa1,...,ak
t (g)| ≤ at−d/2eωtexp(−b |g|

2

t
),

where |g| is the distance from the identity e to the element g of G in the
optimal control metric corresponding to the system X1, . . . , Xk. In the sequel
we will need a different kind of estimates for pa1,...,ak

t .

Lemma 2 Let pa1,...,ak
t be the kernel corresponding to the operator La1,...,ak .

Then

| d
n

dtn
pa1,...,ak

t (e)| ≤ ‖ d
n

dtn
pa1,...,ak

t ‖L∞ ≤ C ′
n

{
t−d/2−n if t ≤ 1
t−D/2−n if t > 1.

(14)

Proof. First we show that the semigroup P a1,...,ak
t is equicontinuous on L1(G)

and L∞(G). Indeed, let g′ be a free nilpotent Lie algebra with k generators

5



Z1, . . . , Zk and the same rank as algebra g. There exists a homeomorphism
dU : g′ → g such that

dU(Zi) = Xi for i = 1, . . . , k.

(See [20] p. 46). Next let U : G′ → G be the corresponding homeomorphism
of groups G′ and G. By p′t we denote the heat kernel corresponding to the
operator

L′ = −
k∑

i=1

aiZ
2
i .

g′ is a free nilpotent Lie algebra, so there exists a family of dilation δ′t on g′

such that
δ′tZi = tZi.

Note that L′ is a homogeneous operator with respect to δ′t so

exp(−tL′) = δ̄′t−1/2 ◦ exp(−L′) ◦ δ̄′t1/2

and
p′t(x) = t−Q′/2p′1(δ

′
t−1/2x), (15)

where Q′ is the homogeneous dimension of group G′. By (15)

‖p′t‖L1 = ‖p′1‖L1 <∞.

However we note that for any Borel set A ⊂ G∫
A
pa1,...,ak

t dx =
∫

U−1(A)
p′tdx

′.

Thus ‖pa1,...,ak
t ‖L1(G) ≤ ‖p′t‖L1(G′) and for all 1 ≤ p ≤ ∞

‖P a1,...,ak
t ‖Lp→Lp ≤ ‖pa1,...,ak

t ‖L1 ≤ ‖p′1‖L1 <∞. (16)

By (16) semigroup P a1,...,ak
t is equicontinuous on all LP (G). Hence in virtue

of Theorem II.3.2. [20] to show (14) for n = 0 it is enough to prove that
La1,...,ak satisfies the following Nash inequalities

‖ψ‖2+2/d
L2 ≤ CRe (La1,...,akψ, ψ)‖ψ‖4/d

L1 , (17)

‖ψ‖2+2/D
L2 ≤ CRe (La1,...,akψ, ψ)‖ψ‖4/D

L1 . (18)
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If we put αi = Re ai, Yi = α
1/2
i Xi and

L′′ = −
k∑

i=1

Y 2
i

then
Re (La1,...,akψ, ψ) = (L′′ψ, ψ).

However L′′ generates a symmetric Markov semigroup and it is well known
that (17) and (18) holds for L′′. See e.g. Chapter IV [20] (see also Theorem
2.4.6 [4]). To get (14) for all n we note that P a1,...,ak is a bounded analytic
semigroup on L1 , so

‖(La1,...,ak)nP a1,...,ak
t ‖L1→L1 ≤ C ′′

nt
−n.

However
dn

dtn
P a1,...,ak

t = (La1,...,ak)nP a1,...,ak
t

and

‖ d
n

dtn
pa1,...,ak

t ‖L∞ = ‖(La1,...,ak)nP a1,...,ak
t ‖L1→L∞

≤ ‖(La1,...,ak)nP a1,...,ak

t/2 ‖L1→L1 × ‖P a1,...,ak

t/2 ‖L1→L∞

≤ C ′
nt
−n‖P a1,...,ak

t/2 ‖L1→L∞ .

Hence (14) for arbitrary n ≥ 0 follows from case n = 0. This proves Lemma 2.

Next, note that if L is quasi-homogeneous then by (9) for t > 0 we have

δ̄1/t ◦ La1,...,ak ◦ δ̄t = Lt2d1a1,...,t2dkak .

Thus
δ̄1/t ◦ P a1,...,ak

s ◦ δ̄t = P t2d1a1,...,t2dkak
s . (19)

In virtue of (19)

1

tQ
pa1,...,ak

s (δt−1g) = pt2d1a1,...,t2dkak
s (g),

but if e is the identity element of G then δt−1e = e, so

1

tQ
pa1,...,ak

s (e) = pt2d1a1,...,t2dkak
s (e). (20)

The following lemma shows that (20) is valid for t ∈ Σ, where Σ is a certain
sector in the complex plane containing the nonnegative real numbers.
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Lemma 3 For complex numbers ai, i = 1, . . . , k such that Re ai > 0 the
semigroups P a1,...,ak

t depend analytically on the coefficients a1, ..., ak. Hence

1

tQ
pa1,...,ak

s (e) = pt2d1a1,...,t2dkak
s (e). (21)

for all t ∈ Σa,b, where Σa,b = {z ∈ C : b < arg z < a}, a = π/2−max{arg ai}
2 max{di}

and b = −π/2−min{arg ai}
2max{di} .

Proof. We note that the resolvent of the operator La1,...,ak

R(λ, La1,...,ak) = (λI − La1,...,ak)−1

is an analytic function of a1, ..., ak. Indeed

R(λ, La1,...,ak + zX2
i ) = R(λ, La1,...,ak)(

∞∑
k=0

(zX2
i R(λ, La1,...,ak))k),

and
∂ai
R(λ, La1,...,ak) = R(λ, La1,...,ak)X2

i R(λ, La1,...,ak).

However in virtue of Theorem 3.3 II [5] X2
i R(λ, La1,...,ak) is a bounded oper-

ator on L2 and R(λ, La1,...,ak) is an analytic function of a1, ..., ak. Now by the
following formula (Lemma 4.1 Chapter 3 [13])

R(λ, La1,...,ak)[P a1,...,ak
t − P b1,...,bk

t ]R(λ, Lb1,...,bk)

=
∫ t

0
P a1,...,ak

(t−s) [R(λ, La1,...,ak)−R(λ, Lb1,...,bk)]P b1,...,bk
s ds

we have

R(λ, La1,...,ak)∂ai
P a1,...,ak

t R(λ, La1,...,ak)

=
∫ t

0
P a1,...,ak

(t−s) ∂ai
R(λ, La1,...,ak)P a1,...,ak

s ds

=
∫ t

0
P a1,...,ak

(t−s) R(λ, La1,...,ak)X2
i R(λ, La1,...,ak)P a1,...,ak

s ds.

This proves that the semigroup P a1,...,ak is an analytic function of a1, ..., ak,
so both sides of (21) are analytic functions of t. Hence to prove (21) it is
enough to recall that, in virtue of (20), (21) is true if t is real and t > 0.

Finally, to prove Theorem 1 we will need the following lemma
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Lemma 4 Suppose pz is a heat kernel corresponding to the quasi-homoge-
neous operator. Then the value of the kernel at the origin pz(e) regarded as
a function of variable z extends analytically to the sector Σε+π/2 for some
ε > 0. Moreover for z = is , where s ∈ R,

| d
n

dzn
pz(e)| ≤ cn

{
|z|−d/2−n if |z| ≤ 1
|z|−D/2−n if |z| > 1.

(22)

Proof. We put t = e−iθ, θ = π
4dk

and z = reiω. Now pz(e) = p1,...,1
z (e)

is an analytic function of z for −π/2 < ω < π/2. On the other hand
pt2d1 ,...,t2dk

z (e) = peiωt2d1 ,...,eiωt2dk

r (e) is an analytic function of z for

0 < ω < π/2 + θ × 2 min{d1, . . . , dk} = π/2 + π
d1

2dk

.

However, in virtue of Lemma 3 for 0 < ω < π/2

1

tQ
p1,...,1

z (e) =
1

tQ
peiω ,...,eiω

r (e) = peiωt2d1 ,...,eiωt2dk

r (e) = pt2d1 ,...,t2dk

z (e). (23)

This gives us an analytic extension of pz(e) for −π/2 < ω < π/2 + π d1

4dk
.

Finally since Re it2dj > 0 so by Lemma 2 for ω = π/2

| d
n

dzn
pz(e)| ≤ ‖tQ dn

dzn
pt2d1 ,...,t2dk

z ‖L∞

= ‖tQ dn

drn
pitd1 ,...,it2dk

r ‖L∞

≤ cn(r−d/2−n ∧ r−D/2−n) = cn(|z|−d/2−n ∧ |z|−D/2−n),

what proves (22) for ω = π/2. In the same way we can construct an analytic
extension of pz(e) for −π/2− π d1

4dk
< ω < π/2 and prove (22) for ω = −π/2.

This finishes the proof of Lemma 4.

Proof of Theorem 1. Note that if KF (L) is defined by (2) and µL is the
Plancherel measure for L then

KF (L)(e) =
∫ ∞

0
F (λ) dµL(λ),

so
pz(e) =

∫ ∞

0
ezλ dµL(λ).

Hence
p−it(e) = µ̂(t).

Now (13) follows by the following
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Proposition 1 Assume that for any natural number n the Fourier transform
of function f : R → C satisfies the following estimates

| d
n

dtn
f̂(t)| ≤ c′nt

a−n

and that supp f ⊂ [0,∞). Then

| d
n

dtn
f(t)| ≤ c′′nt

−1−a−n

for any n ≤ 0.

Proof. We define function x
1/2
+ by the formula

x
−1/2
+ (x) =

{
x−1/2 if x ≤ 0
0 if x < 0.

If f is a such distribution that supp f ⊂ [0,∞) than f ∗ x−1/2
+ is well defined

(see (4.2.6) p. 104 [8]) and

1

(Γ(1/2))2

d

dt
f ∗ x−1/2

+ ∗ x−1/2
+ = f.

Next we note that (see example 7.1.17 [8])

|(f ∗ x−1/2
+ )∧(λ)| = Γ(1/2)|f̂(λ)λ−1/2|

and that if supp f ⊂ [0,∞) and |f(x)| ≤ c|t|b for b > −1 then

|f ∗ x−1/2
+ (t)| ≤ c′|t|b+1/2.

Hence it is enough to prove Proposition 1 for a > −1. However Proposition 1
for a > −1 can be proved in the same way as Proposition 2 p. 245 [19].

Remark 1. If ∆ is a standard Laplace operator on one-dimensional torus,
then it easy to check that

µ∆ = δ0 + 2
∞∑

j=1

δj2 .

Of course µ∆ does not have a density, so Theorem 1 is not true for all nilpotent
Lie groups. However we are not aware of any counterexample to Theorem 1
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in case of a simple connected group. Also, we do not know if Hörmander’s
estimates (4) are true for all nilpotent Lie group.

Remark 2. It is interesting to note that reading carefully the proof of The-
orem 1 we can easily show that the function α(z) can be extend analytically
to a sector Σε for some ε > 0 and its extension satisfies (13).

Remark 3. Suppose that X1, ..., Xk is homogeneous algebraic base of g i.e.
X1, ..., Xk generate g as a Lie algebra and (9) is satisfied. Next let operator
L be defined by the formula

L =
k∑

i=1

k∑
i=1

aijXiXj,

where (aij) is positive-definite, symmetric matrix. It follows from the proof
that Theorem 1 holds for operator L if we assume that the matrix (aij(di+dj))
is positive-definite.

3 Multiplier Theorem

In this section we apply estimates for Plancherel measure of quasi-homoge-
neous operators from Theorem 1 to obtain a stronger version of Alexopoulos’
multiplier theorem [1]. In what follows for g ∈ G we put |g| = ρ(e, g), where e
is the identity element of G and ρ is the optimal control metric corresponding
to the system X1, . . . , Xk. For x ∈ RQ by |x| we denote the Euclidean norm
of x. We assume that operator L is a quasi-homogeneous operator defined
by (1). We start this section with the following lemma.

Lemma 5 Suppose that for the Plancherel measure of the operator L we
have dµL = αL(λ) dλ and

αL(λ) ≤ CλQ/2−1. (24)

Then for any bounded Borel function F : R → C∫
G

|g|a|KF (
√

L)(g)|
2 dg ≤ C ′

∫
RQ

|x|a|K
F (
√

∆Q)
(x)|2 dx (25)

and ∫
G

|g|a|Xi ∗KF (
√

L)|
2 dg ≤ C ′

∫
RQ+2

|x|a|K
F (
√

∆Q+2)
|2 dx, (26)

where ∆Q is a standard Laplace operator on RQ.
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Lemma 5 for dµL = CλQ/2−1dλ is proved in [14]. It is easy to check that
the proof from [14] works also under the assumptions of Lemma 5. Neverthe-
less we include here a short proof of Lemma 5 for the reader’s convenience.

Proof. If χbr is a characteristic function of Euclidean ball of radius r
centred at 0 in RQ then function χbrKF (

√
∆Q+1)

and (1−χbr)KF (
√

∆Q+1)
are

radial, so there exist functions Fr : R+ → C and F r : R+ → C such that

K
Fr(
√

∆Q)
= χbrKF (

√
∆Q)

and
K

F r(
√

∆Q)
= (1− χbr)KF (

√
∆Q)

.

If H is an even function which coincides with Fr on R+, and Ĥ its Fourier
transform then

supp Ĥ ⊂ [−r, r],
but by the property of the final speed of propagation of the wave equation,
e.g. see [15] or [11] for proof, we have

supp
(
KCt(

√
L)

)
⊂ {g : |g| ≤ t},

where Ct(λ) = cos(tλ). Hence using the following functional calculus formula

Fr(
√
L) =

1

2π

∫
Ĥ(t)Ct(

√
L) dt,

we get
supp

(
Fr(

√
L)
)
⊂ {g ∈ G : |g| ≤ r}. (27)

Obviously F = Fr + F r so by (27)

KF r(
√

L)(g) = KF (
√

L)(g) for |g| > r. (28)

On the other hand by the Plancherel Theorem (or by (10)) for any function
F : R+ → C we have

‖K
F (
√

∆Q)
‖2

L2 = CQ

∫ ∞

0
|F (λ)|2λQ−1dλ

and by (24) we get∫
G

|KF (
√

L)(g)|
2 dg ≤ C

∫
RQ

|K
F (
√

∆Q)
(x)|2 dx.
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Hence in virtue of (28)∫
|g|>r

|KF (
√

L)(g)|
2 dg =

∫
|g|>r

|KF r(
√

L)(g)|
2 dg =

∫
G

|KF r(
√

L)(g)|
2 dg (29)

≤ C
∫

RQ

|K
F r(
√

∆Q)
(x)|2 dx = C

∫
|x|>r

|K
F (
√

∆Q)
(x)|2 dx.

Finally by (29) for any a > 0

∫
G

|g|a|KF (
√

L)(g)|
2dg =

∫
G

|g|∫
0

ara−1|KF (
√

L)(g)|
2drdg

=

∞∫
0

ara−1
∫

|g|>r

|KF (
√

L)(g)|
2drdg ≤ C

∞∫
0

ara−1
∫

|x|>r

|K
F (
√

∆Q)
(x)|2 dx

= C
∫

RQ

|x|a|K
F (
√

∆Q)
(x)|2 dx.

This proves (25). To show (26) we note that∫
G

|XiKF (
√

L)(g)|
2 dg ≤

∫
G

|
√
LKF (

√
L)(g)|

2 dg ≤ C
∫

RQ+2

|K
F (
√

∆Q+2)
(x)|2 dx

and we prove (26) in similar way as (25).

Using Theorem 1 and Lemma 5 we will prove the following version of
Alexopoulos’ multiplier theorem for quasi-homogeneous operators.

Theorem 2 Let L be a quasi-homogeneous operator on Lie group G and
let d ≤ D be dimensions of L at 0 and at infinity respectively and let ψ ∈
C∞

c (R+) be any fixed auxiliary function, not identically zero. If function F
satisfies the following condition

sup
t>0

(
‖ψ(·)F (t·)‖2

Hd/2+ε
+ (1 + t)

d−D
2 ‖ψ(·)F (t·)‖2

HD/2+ε

)
<∞ (30)

for certain ε > 0, then the operator F (L) is bounded on Lp for 1 < p < ∞
and of weak type 1 → 1.
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Proof. (30) is actually independent of the choice of ψ so we can assume
that ψ(λ) ∈ C∞

c ([1, 4]) and

∞∑
n=−∞

ψ(2nλ) = 1 for all λ > 0.

We put
Fn(λ) = ψ(2−nλ)F (λ).

and
Ψn(λ) = Fn(2nλ).

Note that

F (L) =
∞∑

n=−∞
Fn(L). (31)

To prove Theorem 2 it is enough to show that∫
|g|>r

|KFn(L)(g)| dg ≤ C(r2n/2)−ε (32)

and ∫
G

|XiKFn(L)(g)| dg ≤ C2n/2. (33)

Indeed, Theorem 2 follows by (31), (32) and (33) by standard Calderón-
Zygmund analysis (see the proof of Theorem 7.9.5 [8]).

Proof of (32) and (33). By (30)

‖Ψn‖2
Hd/2+ε

≤ C (34)

and
‖Ψn‖2

HD/2+ε
≤ C(1 + 2n)

D−d
2 . (35)

In virtue of Theorem 1 and Lemma 5∫
G

|g|s|KFn(L)(g)|2dg ≤C
( ∫
RD

|x|s|KFn(∆D)(x)|2dx ∧
∫
Rd

|x|s|KFn(∆d)(x)|2dx
)

= C
(
2n

(D−s)
2

∫
RD

|x|s|KΨn(∆D)(x)|2dx ∧ 2n
(d−s)

2

∫
Rd

|x|s|KΨn(∆d)(x)|2dx
)
(36)

≤ C ′(2n
(D−s)

2 ∧ 2n
(d−s)

2 )‖Ψn‖2
Hs/2

.
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On the other hand by the Schwarz inequality

(
∫

|g|>r

|KFn(L)(g)| dg)2 ≤
∫
G

(|g|D+2ε + |g|d+2ε)|KFn(L)(g)|2 dg (37)

×
∫

|g|>r

(|g|D+2ε + |g|d+2ε)−1 dg.

By (36), (34) and (35)∫
G

(|g|D+2ε + |g|d+2ε)|KFn(L)(g)|2 dg ≤ C
(
(2−nε ∧ 2−n(ε+D−d

2
))‖Ψn‖2

HD/2+ε
(38)

+(2−nε ∧ 2−n(ε+ d−D
2

))‖Ψn‖2
Hd/2+ε

)
≤ C ′2−nε.

Finally, if Bt = {g ∈ G : |g| ≤ t} and V (Bt) is a volume of the ball Bt then
by Proposition IV.5.7 V (Bt) ∼ td ∧ tD, so∫

|g|>r

(|g|D+2ε + |g|d+2ε)−1 dg =
∫ ∞

r
[
d

dt
((tD+2ε + td+2ε)−1)]V (Bt)dt (39)

≤ Cr−2ε

and (32) follows by (38) and (39).

Next in virtue of (26) for n < 0∫
G

|XiKFn(L)(g)| dg =
∫

|g|<2−n/2

|XiKFn(L)(g)| dg

+
∫

|g|≥2−n/2

|XiKFn(L)(g)| dg ≤ V (B2−n/2)1/2
( ∫

G

|XiKFn(L)(g)|2 dg
)1/2

+
( ∫

G

(|g|D+2ε)|XiKFn(L)(g)|2 dg
)1/2

×
( ∫
|g|≥2−n/2

(|g|D+2ε)−1 dg
)1/2

≤ C
(
2−nD/4+n((D+2)/4) + 2(−ε+1)n/2+εn/2

)
‖Ψn‖HD/2+ε

≤ C ′2n/2.

Finally for n > 0∫
G

|XiKFn(L)(g)|dg =
∫

|g|<2−n/2

|XiKFn(L)(g)|dg +
∫

1>|g|≥2−n/2

|XiKFn(L)(g)|dg
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+
∫

|g|≥1

|XiKFn(L)(g)| dg ≤ V (B(2−n/2))1/2

( ∫
|g|<2−n/2

|XiKFn(L)(g)|2 dg
)1/2

+

(∫
G

(|g|d+2ε)|XiKFn(L)(g)|2 dg
)1/2

×
( ∫

1>|g|≥2−n/2

(|g|d+2ε)−1 dg

)1/2

+

(∫
G

(|g|D+2ε)|XiKFn(L)(g)|2 dg
)1/2

×
( ∫
|g|≥1

(|g|D+2ε)−1 dg

)1/2

≤
(

2n(d+2)/4−nd/4 + 2(−ε+1)n/2+εn/2

)
‖Ψn‖Hd/2+ε

+2−n−2ε+D−D+2
4 ‖Ψn‖HD/2+ε

≤ C ′2n/2.

This proves (33) and finishes the proof of Theorem 2.

Remark. Although Theorem 2 is the strongest result of this type known
to the author, the papers of Müler and Stein [12] and Hebisch [7] suggest
that Theorem 2 is not optimal.
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