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Abstract. We prove a Hörmander-type spectral multiplier theorem for a sublaplacian
on SU(2), with critical index determined by the Euclidean dimension of the group. This re-
sult is the analogue for SU(2) of the result for the Heisenberg group obtained by D. Müller
and E.M. Stein and by W. Hebisch.

1. Introduction

Suppose that X is a measure space, equipped with a measure µ, and that L is a self-
adjoint positive definite operator on L2(X). Then L has a spectral resolution:

L =

∫ ∞

0

λ dEL(λ),

where the EL(λ) are spectral projectors. For any bounded Borel function F : [0,∞) → C,
we define the operator F (L) by the formula

F (L) =

∫ ∞

0

F (λ) dEL(λ).

By the spectral theorem, F (L) is well defined and bounded on L2(X). Spectral multiplier
theorems give sufficient conditions on F under which the operator F (L) extends to a
bounded operator on Lp(X) for some range of p. Once and for all, fix a nonzero cut-off
function η in the Schwartz space S(R) supported in R+. Our theorem, like many, will be
phrased in terms of the “local Sobolev norm”

sup
t∈R+

∥∥η F(t)

∥∥
Hs
,

where Hs is the Sobolev space of order s, and F(t) is given by

F(t)(λ) = F (tλ) ∀λ ∈ [0,∞).

The main goal of this article is to prove a spectral multiplier theorem for a sublaplacian
on SU(2), the group of 2 × 2 complex unitary matrices of determinant 1. Its Lie algebra
su(2) consists of the 2× 2 complex skew-adjoint matrices of trace 0. Define X, Y , and Z
in su(2) by

(1.1) X =

(
0 1
−1 0

)
, Y =

(
0 i
i 0

)
, and Z =

(
i 0
0 −i

)
.
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These form a basis of su(2). We identify X, Y and Z with the corresponding left-invariant
vector fields on SU(2), and define L by the formula

(1.2) L = −(X2 + Y 2).

Then L is a positive definite self-adjoint left-invariant second-order subelliptic differential
operator on L2(SU(2)). The main result of this paper is the following spectral multiplier
theorem.

Theorem 1.1. Suppose that s > 3/2 and that F : [0,∞) → C is a bounded Borel function
such that

sup
t∈[1,∞)

∥∥η F(t)

∥∥
Hs
<∞.

Then F (L) is of weak type (1, 1) and bounded on Lp(SU(2)) when 1 < p <∞.

The subject of spectral multiplier theorems for differential operators is very broad, and
it is impossible to give a complete bibliography here. We therefore only mention work
directly related to our results. We start with the standard Laplace operator ∆d on Rd.
Assume that s > d/2 and that F : [0,∞) → C satisfies the condition that

(1.3) sup
t∈R+

∥∥η F(t)

∥∥
Hs
<∞.

Then L. Hörmander’s multiplier theorem [19], specialised to the radial multipliers, shows
that the operator F (∆d) is of weak type (1, 1) and bounded on Lp(Rd) for p in (1,∞).
The order of differentiability is optimal, in the sense that, if s < d/2, then we can find a
function F such that (1.3) holds but F (∆d) is not of weak type (1, 1) (see [6]). Since this
condition holds, we say that d/2 is the critical index.

Now suppose that L is a homogeneous sublaplacian on a stratified nilpotent Lie group of
homogeneous dimension d. A. Hulanicki and E.M. Stein [22] (see also [16, Theorem 6.25])
proved that if (1.3) holds for some s in (3d/2 + 2,∞), then F (L) is of weak type (1, 1)
and bounded on Lp when 1 < p < ∞. L. De Michele and G. Mauceri [12] improved this
result and proved that the same conclusions hold if s > d/2 + 1. Next, M. Christ [6], and
independently Mauceri and S. Meda [23], proved that differentiability of order greater than
d/2 is sufficient; see also [30]. Then X.T. Duong [13] proved that for some nilpotent groups
of step 2, the order of differentiability required in the multiplier theorem is less then d/2.
Finally, Müller and Stein [25] proved that the Hörmander multiplier theorem holds for some
generalised Heisenberg groups when s > n/2, where n is the Euclidean dimension of the
group. Independently Hebisch [18] proved the same result for all generalised Heisenberg
groups. Müller and Stein [25] also proved that n/2 is the critical index.

At about the same time, spectral multiplier theorems on Lie groups of polynomial growth
were investigated by G. Alexopoulos [3]. In his result, the required order of differentiability
is connected with the volume growth of the ball B(e, r) with centre e and radius r. More
precisely, assume that µ

(
B(x, r)

)
∼ rd when r ≤ 1 and µ

(
B(x, r)

)
∼ rD when r ≥ 1.

Denote by Λs(R) the space of Lipschitz (Hölder) continuous functions of order s. If s >
max(d,D)/2 and F : [0,∞) → C is bounded and satisfies the condition that

sup
t∈R+

∥∥η F(t)

∥∥
Λs
<∞,

then F (L) is of weak type (1, 1) and is bounded on Lp when 1 < p < ∞. Alexopoulos’
multiplier theorem, applied to the operator defined by (1.2), yields a result which is weaker
than Theorem 1.1; Alexopoulos’ method requires Λs for s > 2 instead of Hs for s > 3/2.
In Section 3, we give an alternative proof of Alexopoulos’ multiplier theorem. In fact we
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obtain a more general version, valid not only in the Lie group setting, but also for abstract
operators with the finite speed propagation property.

As we see, the critical index in multiplier theorems is often determined by the volume
growth rate of the ball, or the dimension of the corresponding semigroup (which at least in
principle are the same—see [37]). For elliptic operators the dimension of the corresponding
semigroup coincides with the Euclidean dimension of the underlying space. However,
for subelliptic operators, this semigroup dimension is strictly greater than the Euclidean
dimension. Theorem 1.1 provides another example of a subelliptic operator for which the
critical index in the spectral multiplier theorem is determined by the Euclidean dimension
of the underlying space, not by the dimension of the corresponding semigroup. So we may
view Theorem 1.1 as an extension of the multiplier theorems of [18] and [25]. Note that
the groups investigated by [18] and [25] are all nilpotent of step 2, while SU(2) is simple.
However, in this context it is interesting to note the connection between the Heisenberg
group and SU(2) (see [26, 27]).

Multiplier theorems on compact Lie groups, in particular SU(2), were investigated by
N.J. Weiss [39], R.R. Coifman and G. Weiss [10], J.-L. Clerc [8, 9], A. Bonami and Clerc
[4], and others. However only the result of [10] is applicable to subelliptic operators, and
the multiplier theorem of [10] is weaker then Theorem 1.1.

The proof of Theorem 1.1 has three main ingredients. First, using a Calderón–Zygmund
type argument, we show in Theorem 3.3 that, in order to prove a weak-type (1, 1) estimate

for the operator F (
√
L), it suffices to show that

sup
r∈R+

sup
y∈X

∫
B(y,r)c

∣∣∣KF (1−Φ(r))(
√
L)(x, y)

∣∣∣ dµ(x) ≤ C,

whereKT is the kernel of the operator T , and Φ(r) is a damping factor. Next, in Lemma 3.4,
we show how to estimate integrals outside a ball. In Theorem 3.5, we show how one very
simple Plancherel type estimate may be combined with Theorem 3.3 and Lemma 3.4 to
prove Alexopoulos’ multiplier theorem. As noted, this is a weaker result than Theorem 1.1.
To prove our main theorem, we need one more ingredient, namely a sharper weighted
Plancherel estimate, established in Section 4. In Section 5, we observe that our Theorem 1.1
implies the result of Müller and Stein and of Hebisch for the Heisenberg group H1 by a
contraction argument.

2. Preliminaries

The purpose of this section is to introduce some notation, describe the hypotheses un-
der which we work, and prove a few lemmas which will be useful in our investigation of
multiplier theorems.

2.1. Some notation. Assume that (X, ρ) is a metric space, equipped with a regular Borel
measure µ. The Lebesgue spaces Lp(X) are constructed relative to this measure. Let
B(y, r) denote the ball {x ∈ X : ρ(x, y) ≤ r}; B(y, r)c will denote its complement in X.

Suppose that T is a bounded operator from Lp(X) to Lq(X). We write ‖T‖Lp→Lq for
the usual operator norm of T . If T is of weak type (1, 1), i.e., if

µ ({x ∈ X : |Tf(x)| > λ}) ≤ C
‖f‖L1

λ
∀λ ∈ R+ ∀f ∈ L1(X),

then we write ‖T‖L1→L1,∞ for the least possible value of C in the above inequality; this is
often called the “operator norm”, though in fact it is not a norm.
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If there is a locally integrable function KT : X ×X → C such that

〈Tf1, f2〉 =

∫
X

Tf1 f2 dµ =

∫
X

KT (x, y) f1(y) f2(x) dµ(y) dµ(x)

for all f1 and f2 in Cc(X), then we say that T is a kernel operator with kernel KT . It is
well known that if T is bounded from L1(X) to Lq(X), where q > 1, then T is a kernel
operator, and

‖T‖L1→Lq = sup
y∈X

‖KT (·, y)‖Lq ;

vice versa, if T is a kernel operator and the right hand side of the above inequality is finite,
then T is bounded from L1(X) to Lq(X), even if q = 1.

Given an operator T from Lp(X) to Lq(X), we write

suppKT ⊆ {(x, y) ∈ X ×X : ρ(x, y) ≤ r}

if 〈Tf1, f2〉 = 0 whenever fn is in C(X) and supp fn ⊆ B(xn, rn) when n = 1, 2, and
r1 + r2 + r < ρ(x1, x2). This definition makes sense even if T is not a kernel operator, in
the sense of the previous definition.

Observe that, if F is in L∞(R), then the adjoint of the operator F (
√
L) is F̄ (

√
L). This

implies that, in order to prove that F (
√
L) is of weak type (1, 1) and bounded on Lr(X)

when 1 < r < ∞, for all F is some class of bounded functions which is closed under
conjugation, it suffices to prove that F (

√
L) is of weak type (1, 1). For F (

√
L) is bounded

on L2(X) by the spectral theorem, and the boundedness of F (
√
L) on Lr(X) for r in (1, 2)

follows by interpolation and for r in (2,∞) by duality.

2.2. Hypotheses on the ambient space X. We make two assumptions about the mea-
sured metric space (X,µ, ρ).

Assumption 2.1. We suppose throughout that the “doubling condition” holds, i.e., there
exists a constant C such that

µ(B(x, 2r)) ≤ C µ(B(x, r)) ∀x ∈ X ∀r ∈ R+.

For d and D in [0,∞), we define Vd,D : R+ → R+ by the formula

Vd,D(t) =

{
td when t ≤ 1

tD when t ≥ 1.

We will also use VD,d, with the roles of d and D reversed, in light of the well-known
principle that local and global behaviour in the spatial variables correspond to global and
local behaviour respectively in the spectral variables. Note that Vd,D(r) = VD,d(r

−1)−1.

Assumption 2.2. We always suppose that there is a (d,D) regular weight on X, by which
we mean a nonnegative measurable function w : X ×X → R+, possibly 1, such that

(2.1)

∫
B(y,r)

w−1(x, y) dµ(x) ≤ C Vd,D(r) ∀r ∈ R+ ∀y ∈ X.
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By Hölder’s inequality, this implies that∫
B(y,r)

|k(x, y)| dµ(x)

≤
(∫

B(y,r)

w−1(x, y) dµ(x)

)1/2(∫
B(y,r)

|k(x, y)|2w(x, y) dµ(x)

)1/2

(2.2)

≤ C

(
Vd,D(r)

∫
B(y,r)

|k(x, y)|2w(x, y) dµ(x)

)1/2

.

In particular, if D = 0, then taking limits as r tends to ∞ shows that∫
X

|k(x, y)| dµ(x) ≤ C

(∫
X

|k(x, y)|2w(x, y) dµ(x)

)1/2

for all y in X, so that

‖T‖L1→L1 ≤ C sup
y∈X

(∫
X

|KT (x, y)|2w(x, y) dµ(x)

)1/2

.(2.3)

2.3. Hypotheses on the operator L. Let L be a self-adjoint positive definite operator
on L2(X). We make two assumptions throughout this paper about L.

Assumption 2.3. We suppose that L has the finite propagation speed property:

suppKcos(t
√
L) ⊆ {(x, y) ∈ X ×X : ρ(x, y) ≤ t} ,

Assumption 2.4. We suppose that there is a constant C and a positive integer k such
that L satisfies the Sobolev-type estimate

‖f‖L∞ ≤ C µ
(
B(x, r)

)−1
∥∥∥(

1 + r2L
)k
f
∥∥∥
L1

for all f on X with support in B(x, r), for all x in X and r in R+.

We now give a well known and useful consequence of Assumption 2.3, which goes back
to [5].

Lemma 2.1. Assume that F̂ is the Fourier transform of a bounded even Borel function F
and that supp F̂ ⊆ [−r, r]. Then

suppKF (
√
L) ⊆ {(x, y) ∈ X ×X : ρ(x, y) ≤ r} .

Proof. If F is an even function, then by the Fourier inversion formula,

F (
√
L) =

1

2π

∫ ∞

−∞
F̂ (t) cos(t

√
L) dt.

But supp F̂ ⊆ [−r, r], so Lemma 2.1 follows from Assumption 2.3. �

2.4. Even functions. The result of Lemma 2.1 is key to our work. In order to be able to
use it, we must deal with even functions on R rather than functions on [0,∞). Of course,

since the spectrum of L is contained in [0,∞), the operator F (
√
L) depends only on the

restriction of F to this set.
We denote by B(R) the space of bounded even complex-valued Borel functions on R,

and by BR(R) the subspace of B(R) of functions which vanish outside [−R,R].
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2.5. Plancherel type hypotheses. Given a function F : R → C and R in R+, we denote
by F(R) : R → C the function x 7→ F (Rx).

Assumption 2.5. Throughout this paper, we will suppose that

(2.4) sup
y∈X

(∫
X

∣∣∣KF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C VD,d(R)1/2
∥∥F(R)

∥∥
L∞

,

for all R in R+ and all F in BR(R), where w is a (d,D) regular weight.

Sometimes we will replace
∥∥F(R)

∥∥
L∞

with
∥∥F(R)

∥∥
Lp

, where p is in [1,∞); this is a stronger
assumption.

When D = 0, Assumption 2.5 is equivalent (up to a change in constants) to the appar-
ently weaker assumption that

sup
y∈X

(∫
X

∣∣∣KF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C Nd/2
∥∥F(N)

∥∥
L∞

,

for all N in Z+ and all F in BN(R). We sometimes suppose that this inequality holds
when

∥∥F(N)

∥∥
L∞

is replaced by the mixed norm,
∥∥F(N)

∥∥
N,p

, given by

(2.5) ‖G‖N,p =

(
1

N

N∑
i=1

(
sup

|λ|∈[ i−1
N
, i
N

]

|G(λ)|
)p)1/p

=

(
1

N

N∑
i=1

sup
|λ|∈[ i−1

N
, i
N

]

|G(λ)|p
)1/p

where p is in [1,∞) and N is a positive integer; in this definition, to obtain a norm, we
must require that suppG ⊆ [−1, 1].

2.6. Examples. First, suppose that w = 1, that the uniform ball size condition

C Vd,D(r) ≤ µ
(
B(x, r)

)
≤ C ′ Vd,D(r) ∀r ∈ R+ ∀x ∈ X

holds, and that L satisfies the heat kernel estimate

(2.6) ‖exp(−tL)‖L1→L2 ≤ C Vd,D(t)−1/4 ∀t ∈ R+.

Then for F in BR(R), we see that∥∥∥F (
√
L)

∥∥∥
L1→L2

≤
∥∥∥F (

√
L)eR

−2L
∥∥∥
L2→L2

∥∥exp(−R−2L)
∥∥
L1→L2

≤ C VD,d(R)1/2 ‖F‖L∞ ,
and Assumption 2.5 holds. Next, from the formulae

‖f‖L∞ ≤
∥∥(1 + r2L)−m

∥∥
L1→L∞

∥∥(1 + r2L)mf
∥∥
L1 ,

(I + r2L)−m =
1

Γ(m)

∫ ∞

0

e−t tm−1 exp(−tr2L) dt

and
‖exp(−tL)‖L1→L∞ ≤ C Vd,D(t)−1/2 ∀t ∈ R+,

(which is a consequence of (2.6)), Assumption 2.4 follows. It is perhaps worth pointing out
that, when (2.6) holds, then Assumption 2.3 is equivalent to having Gaussian bounds for
the heat kernel—see [31] for more details. Examples where these hypotheses hold include
Lie groups of polynomial growth.

Second, when the space X is a Lie group, and L is a left-invariant differential operator,

then the operator F (
√
L) is given by convolution with a kernel, K̃F (

√
L) say, i.e.,

F (
√
L)f(g) = f ∗ K̃F (

√
L)(g) =

∫
X

f(h) K̃F (
√
L)(h

−1g) dh,
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and ∥∥∥F (
√
L)

∥∥∥
L1→L2

=
∥∥∥K̃F (

√
L)

∥∥∥
L2
.

The Plancherel formula for the commutative subalgebra of L1(X) generated by L gives
rise to a formula of the form∥∥∥K̃F (

√
L)

∥∥∥
L2

=

(∫ ∞

0

|F (λ)|2 dπ(λ)

)1/2

for some Plancherel measure π (see, e.g., [6]). For a homogeneous sublaplacian on a
homogeneous group of homogeneous dimension Q, it is immediate that dπ(λ) is a multiple
of λQ−1 dλ. Hence, in this case,∥∥∥F (

√
L)

∥∥∥
L1→L2

≤ C VQ,Q(R)1/2
∥∥F(R)

∥∥
L2 ,

for all F in BR(R). On Tn, the description of the Plancherel measure involves number
theory, and for a general subelliptic operator on a compact Lie group, one cannot be very
specific about the Plancherel measure. However, the case where L is the Laplacian is
covered in the next example.

Third, for a general positive definite elliptic pseudo-differential operator on a compact
manifold, Assumption 2.4 holds by general elliptic regularity theory. Further, one has the
Avakumovič–Agmon–Hörmander theorem.

Theorem 2.2. Let L be a positive definite elliptic pseudo-differential operator of order m
on a compact manifold X of dimension d. Then

(2.7)
∥∥χ[r−1,r)(L

1/m)
∥∥
L1→L2 ≤ C r(d−1)/2 ∀r ∈ R+.

Theorem 2.2 was proved by Hörmander in [21]; see also [1, 2, 20]. This theorem has a
useful corollary.

Corollary 2.3. Let L be a positive definite elliptic pseudo-differential operator of order 2
on a compact manifold X of dimension d. Then

(2.8)
∥∥∥F (

√
L)

∥∥∥
L1→L2

≤ C Nd/2
∥∥F(N)

∥∥
N,2

∀N ∈ Z+ ∀F ∈ B(R)N .

Proof. By the spectral theorem,∥∥∥F (
√
L)

∥∥∥
L1→L2

≤
( N∑
i=1

∥∥∥χ[i−1,i] F (
√
L)

∥∥∥2

L1→L2

)1/2

≤ CNd/2
∥∥F(N)

∥∥
N,2

,

as required. �

The importance of the estimate (2.7) for multiplier theorems was noted by C.D. Sogge
[32], who used it to establish the convergence of Riesz means up to the critical exponent (d−
1)/2, see also [7]. The following theorem appears to be due to A. Seeger and Sogge [29];
see also Hebisch [17].

Theorem 2.4. Suppose that L is the Laplace–Beltrami operator on a compact Riemannian
manifold X of dimension d. Assume that s > d/2 and that F : [0,∞) → C is a bounded
function such that

sup
t∈[1,∞)

∥∥η F(t)

∥∥
Hs
<∞.

Then F (
√
L) is of weak type (1, 1) and bounded on Lp(X) when 1 < p <∞.
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This result is a consequence of Theorem 3.6 below and Corollary 2.3.
Theorem 2.4, applied to the Laplace operator on a compact Lie group, gives a stronger

result then Alexopoulos’ multiplier theorem. However, we do not know whether the
Avakumovič–Agmon–Hörmander condition holds for subelliptic operators. Hence Alex-
opoulos’ result gives the best known result for a sublaplacian on a compact Lie group
other than SU(2).

2.7. The projection EL(0). In spectral multiplier theory, it is often necessary to consider
the possibility that the projection EL(0) is nontrivial, and this paper is no exception.

Lemma 2.5. The projection EL(0) is zero if D > 0, and is bounded on all the spaces Lp(X)
for p in [1,∞] if D = 0.

Proof. Observe that, for all small positive ε, we have

sup
y∈X

(∫
X

∣∣KEL(0)(x, y)
∣∣2w(x, y) dµ(x)

)1/2

= sup
y∈X

(∫
X

∣∣∣Kχ{0}(
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

(2.9)

≤ C VD,d(ε),

from Assumption 2.5. It follows that if D > 0 then EL(0) = 0.
If D = 0, then the left hand side of inequality (2.9) is bounded. Combining this fact

with (2.3), we see that

‖EL(0)‖L1→L1 ≤ sup
y∈X

∫
X

∣∣KEL(0)(x, y)
∣∣ dµ(x) ≤ C.

By duality and interpolation, EL(0) is bounded on all the spaces Lp(X) for p in [1,∞]. �

2.8. Besov spaces. We will phrase our results in terms of Besov spaces. For the reader’s
convenience, we recall the definitions here.

Fix [0, 1]-valued functions φ0 and φ in S(R) supported in (−4, 4) and (1, 4) respectively,
such that φ0(λ)+

∑
k∈Z+ φk(λ) = 1 in R, where φk(λ) = φ(2−k|λ|) for k in Z+. Then φ0 = 1

on [−2, 2] and suppφj ⊆ [2j, 2j+2] ∪ [−2j+2,−2j] for j in N. We define the operators Tφj
on S ′(R) by the formula

(2.10) (TφjF )̂ = φjF̂ ,

for j in N.
For s in R+ and p and q in [1,∞], the Besov space Bp,q

s (R) is defined to be the set of
all locally integrable functions F on R such that ‖F‖Bp,qs <∞, where

‖F‖Bp,qs =
(∑
j∈N

2jsq
∥∥TφjF∥∥q

Lp

)1/q

if 1 ≤ q < ∞, with the usual modification if q = ∞. Clearly Bp,q
s (R) ⊆ Bp,q̄

s̄ (R) if
s > s̄ or if s = s̄ and q < q̄. It is known that the Besov space Bp,q

s (R) is “close to”
the potential space W p

s (R) of functions f in Lp(R) such that ∆s/2f also lies in Lp(R),
with the norm ‖f‖W p

s
given by ‖f‖Lp +

∥∥∆s/2f
∥∥
Lp

. In particular, B2,2
s (R) = Hs(R) and

Λs(R) ⊆ B∞,∞
s (R). See, e.g., [33, Chap. V] or [36, Chap. I and II] for more details.

Locally, Besov spaces are invariant under composition with diffeomorphisms. This means
that it is equivalent to show that F (

√
L) is bounded from Lu(X) to Lv(X) for all F such
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that ηF(R) is in Bp,q
s (R) for all R in R+, and to show that F (L) is bounded from Lu(X)

to Lv(X) for all F in the same class.

3. General multiplier theorems

We fix an even function Φ in S(R) such that Φ(0) = 1, whose Fourier transform Φ̂ is
supported in [−1, 1]; we let Φ(r) denote the dilated function Φ(r· ) and Φ(l) denote the l th

derivative of Φ. For later purposes, note that for any fixed odd positive integer k, we may
assume that Φ(l)(0) = 0 when 1 ≤ l ≤ k. It then follows that there is a constant C such
that

(3.1) max
{∣∣(Φ(r) − 1)(l)(x)

∣∣ : 1/4 ≤ x ≤ 1, 0 ≤ l ≤ k
}
≤ C

rk+1

1 + rk+1
∀r ∈ R+.

Indeed, because Φ is in S(R), it follows, for all x in R and r in R+, that if l = 0, then∣∣Φ(r)(x)− 1
∣∣ ≤ 1 + ‖Φ‖L∞ ,

while if l > 0, then ∣∣(Φ(r) − 1)(l)(x)
∣∣ = rl

∣∣Φ(l)(rx)
∣∣ ≤ C rl(1 + |rx|)−l.

Further, Φ extends to an entire function in C of exponential type 1, and we may write

Φ(x) = 1 +
ck+1

(k + 1)!
xk+1 + . . . ∀x ∈ C,

where the coefficients cm are uniformly bounded; it is easy to use this fact to show that∣∣(Φ(r) − 1)(l)(x)
∣∣ ≤ C rk+1

when |x| ≤ 1 and 0 < r ≤ 1.
The following lemma is crucial to our paper.

Lemma 3.1. With Φ in S(R) chosen as above, the kernel KΦ(r)(
√
L) of the self-adjoint

operator Φ(r)(
√
L) satisfies

suppKΦ(r)(
√
L) ⊆ {(x, y) ∈ X ×X : ρ(x, y) ≤ r} .

Further, if supp b ⊆ B(x, r), then for all q in [1,∞],∥∥∥Φ(r)(
√
L)b

∥∥∥
Lq
≤ C µ

(
B(x, 2r)

)−1/q′ ‖b‖L1 ∀r ∈ R+.

Proof. The first part of the lemma follows from Lemma 2.1.
Now we show that

(3.2)
∥∥∥Φ(r)(

√
L)

∥∥∥
L1→L1

≤ C ∀r ∈ R+.

Take f in L1(X). Then∥∥∥Φ(r)(
√
L)f

∥∥∥
L1

=

∫
X

∣∣∣∣∫
X

KΦ(r)(
√
L)(x, y)f(y) dµ(y)

∣∣∣∣ dµ(x)

≤
∫
X

∫
X

∣∣∣KΦ(r)(
√
L)(x, y)f(y)

∣∣∣ dµ(x) dµ(y)

≤ sup
y∈X

∫
X

∣∣∣KΦ(r)(
√
L)(x, y)

∣∣∣ dµ(x) ‖f‖L1

≤ sup
y∈X

(
Vd,D(r)

∫
X

∣∣∣KΦ(r)(
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

‖f‖L1 ,
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by Fubini’s theorem and (2.2). We conclude that∥∥∥Φ(r)(
√
L)

∥∥∥
L1→L1

≤ sup
y∈X

(
Vd,D(r)

∫
X

∣∣∣KΦ(r)(
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

.(3.3)

An integration by parts shows that

Φ(r)(
√
L) =

∫ ∞

0

Φ(r
√
λ) dEL(λ)

= −Φ(r)(0)EL(0)−
∫ ∞

0

r

2
√
λ

Φ′(r
√
λ)

∫ ∞

0

χ[0,λ] dEL(λ′) dλ

= −EL(0)−
∫ ∞

0

r

2
√
λ

Φ′(r
√
λ)χ[0,λ](L) dλ,

so

KΦ(r)(
√
L) = −KEL(0) −

∫ ∞

0

r

2
√
λ

Φ′(r
√
λ)Kχ[0,λ](L) dλ.(3.4)

Suppose that D > 0, so that EL(0) = 0, by Lemma 2.5. We deduce from formulae (3.3)
and (3.4), Minkowski’s inequality, and the basic Plancherel assumption Assumption 2.5
that∥∥∥Φ(r)(

√
L)

∥∥∥
L1→L1

≤ sup
y∈X

∫ ∞

0

∣∣∣∣ r

2
√
λ

Φ′(r
√
λ)

∣∣∣∣ (
Vd,D(r)

∫
X

∣∣∣Kχ[0,
√
λ](
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

dλ

≤
∫ ∞

0

∣∣∣∣ r

2
√
λ

Φ′(r
√
λ)

∣∣∣∣ (
Vd,D(r)VD,d(

√
λ)

)1/2
dλ

=

∫ ∞

0

|Φ′(rs)|
(
Vd,D(r)VD,d(s)

)1/2
r ds,

by a change of variable. If r ≤ 1, then this is at most∫ 1

0

|Φ′(rs)| rd/2sD/2r ds+

∫ ∞

1

|Φ′(rs)| rd/2sd/2r ds

≤
∫ 1

0

|Φ′(rs)| (rs)min(d/2,D/2)r ds+

∫ ∞

1

|Φ′(rs)| (rs)d/2r ds

≤
∫ ∞

0

|Φ′(rs)| (rs)min(d/2,D/2)r ds+

∫ ∞

0

|Φ′(rs)| (rs)max(d/2,D/2)r ds

=

∫ ∞

0

|Φ′(t)|
(
td/2 + tD/2

)
dt

<∞,

while if r ≥ 1, then we can show similarly that the same bound holds. Thus (3.2) holds in
this case.

On the other hand, ifD = 0, then Φ(r)(
√
L) involves an extra term, namely, EL(0), which

is bounded on L1(X) by Lemma 2.5, and combining this with the previous argument proves
(3.2) in this case too.

To finish the proof of the lemma, take b in L1(X) supported in B(x, r), and let Ψ be

the function x 7→ (1 + x2)kΦ(x). Then Ψ(r)(
√
L) = (1 + r2L)kΦ(r)(

√
L). The argument to
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prove (3.2) also shows that∥∥∥(1 + r2L)kΦ(r)(
√
L)

∥∥∥
L1→L1

=
∥∥∥Ψ(r)(

√
L)

∥∥∥
L1→L1

≤ C,

so from Assumption 2.4, we deduce that∥∥∥Φ(r)(
√
L)b

∥∥∥
L∞

≤ Cµ
(
B(x, 2r)

)−1 ‖b‖L1 .

The general result follows from Hölder’s inequality. �

We now recall the Calderón–Zygmund decomposition.

Theorem 3.2. There exist constants C and k such that, for all f in L1(X) and λ in R+

such that λµ(X) >
∫
X
|f | dµ, there exists a sequence of balls {B(xn, rn) : n ∈ N} and a

decomposition of f :

f = g + b = g +
∑
n∈N

bn

such that

(a) ‖g‖L1 ≤ C ‖f‖L1

(b) ‖g‖L∞ ≤ C λ
(c) supp bn ⊆ B(xn, rn) for all n in N
(d)

∫
X
|bn| dµ ≤ Cλµ

(
B(x, r)

)
for all n in N

(e)
∑

n∈N µ
(
B(xn, rn)

)
≤ C λ−1

∫
X
|f | dµ

(f)
∑

n∈N χB(xn,2rn) ≤ k.

The proof is a variant of the standard arguments, for which see, e.g., [10, p. 66] or [34,
p. 8], and we omit it. The parameter λ is called the level of the decomposition.

To prove that an operator is of weak type (1, 1), we usually use estimates for the gradient
of the kernel. The following theorem replaces the gradient estimates in our setting (see
[11, 14, 15, 17] for other variants of this).

Theorem 3.3. Suppose that F is in B(R), that ‖F‖L∞ ≤ A, and that

(3.5) sup
r∈R+

sup
y∈X

∫
B(y,r)c

∣∣∣KF (1−Φ(r))(
√
L)(x, y)

∣∣∣ dµ(x) ≤ A.

Then ∥∥∥F (
√
L)

∥∥∥
L1→L1,∞

≤ CA.

Proof. It is enough to prove that

µ
({
x :

∣∣∣F (
√
L)f(x)

∣∣∣ ≥ 3λ
})

≤ CA
‖f‖L1

λ

for all f in L1(X) and λ in R+ such that λµ(X) > A
∫
X
|f | dµ.

Fix such an f and λ, and let {B(xn, rn) : n ∈ N} and f = g +
∑

n∈N bn be the corre-
sponding Calderón–Zygmund sequence of balls and decomposition of f at level λ/A. We

define the “nearly good” and “very bad” functions g̃ and b̃ by

g̃ =
∑
n∈N

Φ(rn)(
√
L)bn and b̃ =

∑
n∈N

(
bn − Φ(rn)(

√
L)bn

)
.

Then f = g + g̃ + b̃, so
{
x :

∣∣∣F (
√
L)f(x)

∣∣∣ ≥ 3λ
}

is a subset of{
x :

∣∣∣F (
√
L)g(x)

∣∣∣ ≥ λ
}
∪

{
x :

∣∣∣F (
√
L)g̃(x)

∣∣∣ ≥ λ
}
∪

{
x :

∣∣∣F (
√
L)b̃(x)

∣∣∣ ≥ λ
}
.(3.6)
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To estimate the measure of the first set, recall that F (
√
L) is bounded on L2, by spectral

theory. Thus, by the Chebyshev inequality,

µ
({
x :

∣∣∣F (
√
L)g(x)

∣∣∣ ≥ λ
})

≤

∥∥∥F (
√
L)g

∥∥∥2

L2

λ2
≤ ‖F‖2

L∞ ‖g‖
2
L2

λ2
≤ CA

‖f‖L1

λ
,

since ‖g‖2
L2 ≤ C λ ‖f‖L1 /A.

To deal with the set involving g̃ similarly, it will suffice to show that∥∥∥∑
n∈N

Φ(rn)(
√
L)bn

∥∥∥2

L2
≤ C λ

‖f‖L1

A
.

Now by Lemma 3.1, supp Φ(rn)(
√
L)bn ⊆ B(xn, 2rn), and by the Calderón–Zygmund de-

composition, no point of X belongs to more than k balls B(xn, 2rn). Thus, by Lemma 3.1,∥∥∥∑
n∈N

Φ(rn)(
√
L)bn

∥∥∥2

L2
≤ k

∑
n∈N

∥∥∥Φ(rn)(
√
L)bn

∥∥∥2

L2

≤ C
∑
n∈N

‖bn‖2
L1

µ
(
B(xn, rn)

)
≤ C ′ λ

A

∑
n∈N

‖bn‖L1

≤ C ′′λ
‖f‖L1

A
,

as required.
It remains to deal with the third term in (3.6). Now

µ

({
x :

∣∣∣∣∑
n∈N

F (1− Φ(rn))(
√
L)bn(x)

∣∣∣∣ ≥ λ

})
≤

∑
n∈N

µ
(
B(xn, 2rn)

)
+ µ

({
x :

∣∣∣∣∑
n∈N

F (1− Φ(rn))(
√
L)bn(x)

∣∣∣∣ ≥ λ

} ∖ ⋃
n∈N

B(xn, 2rn)

)
.

However, by the properties of the Calderón–Zygmund decomposition and hypothesis (3.5),∑
n∈N

µ
(
B(xn, 2rn)

)
≤ CA

‖f‖L1

λ
,

and

µ

({
x :

∣∣∣∣∑
n∈N

F (1− Φ(rn))(
√
L)bn(x)

∣∣∣∣ ≥ λ

} ∖ ⋃
n∈N

B(xn, 2rn)

)
≤ 1

λ

∫
X\

⋃
n∈NB(xn,2rn)

∣∣∣∣∑
n∈N

F (1− Φ(rn))(
√
L)bn(x)

∣∣∣∣ dµ(x)

≤ 1

λ

∑
n∈N

∫
X\B(xn,2rn)

∣∣∣F (1− Φ(rn))(
√
L)bn(x)

∣∣∣ dµ(x)

≤ 1

λ

∑
n∈N

‖bn‖L1 sup
y∈X

∫
B(y,rn)c

∣∣∣KF (1−Φ(rn))(
√
L)(x, y)

∣∣∣ dµ(x)

≤ CA
‖f‖L1

λ
,
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as required. �

The next step is to estimate the expression (3.5). A key reduction in the difficulty of the
problem can be effected using the finite propagation speed hypothesis (Assumption 2.3)
and Fourier analysis. To formulate this, we recall the definition of the Besov space Bp,q

s (R)
from Subsection 2.8 and the mixed norm ‖·‖N,p from (2.5).

Lemma 3.4. Suppose that w : X ×X → R+ is nonnegative, and that L satisfies Assump-
tion 2.3 (the finite propagation speed property).
(a) If

(3.7) sup
y∈X

(∫
X

∣∣∣KF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C VD,d(R)1/2
∥∥F(R)

∥∥
Lp
,

for all R in R+ and all F in BR(R), then for all s in R+ there exists a constant Cs such
that

(3.8) sup
y∈X

(∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ Cs
VD,d(R)1/2

(1 + rR)s
∥∥F(R)

∥∥
Bp,∞s

for all r and R in R+ and all F in BR(R).
(b) If

(3.9) sup
y∈X

(∫
X

∣∣∣KF (
√
L)(x, · )

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C Nd/2
∥∥F(N)

∥∥
N,p

for all N in Z+ and all F in BN(R), then for all even functions ξ in S(R) supported
in [−1, 1] and all s in R+ there exists a constant Cs,ξ such that

(3.10) sup
y∈X

(∫
B(y,r)c

∣∣∣Kξ∗F (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ Cs,ξ
Nd/2

(1 + rN)s
∥∥F(N)

∥∥
Bp,∞s

for all r in R+, all N in Z+, and all F in BN(R).

Remark. Observe that (2.6) implies (3.7) where w = 1 and p = ∞. Other Plancherel type
inequalities imply other forms of (3.7) or (3.9).

Observe also that hypothesis (3.9) is a slightly weaker version of hypothesis (3.7). The
price we pay for the weaker hypothesis is a weaker conclusion, in as much as F is replaced
by ξ ∗F ; this effectively damps the kernel of the corresponding operator far away from the
diagonal.

Proof. To prove (3.8), we fix r and R, such that rR > 1, for otherwise the result is trivial.
Recall that φ0 and φj in S(R) are [0, 1]-valued even functions supported in (−4, 4) and
[2j, 2j+2] ∪ [−2j+2,−2j] respectively. Further, φ0(λ) +

∑
k∈Z+ φk(λ) = 1 in R, and φ0 = 1

on [−2, 2]. We define ψ to be φ0( · /4r) and ψ0 to be φ0( · /4rR). Define Tφj by (2.10) and

Tψ and Tψ0 analogously, e.g., (TψF )̂ = ψF̂ .
Take F in BR(R). First, suppψ ⊆ [−r, r], so from Lemma 2.1,

suppKTψF (
√
L) ⊆ {(x, y) ∈ X ×X : ρ(x, y) ≤ r} ,

hence

KF (
√
L)(x, y) = K[F−TψF ](

√
L)(x, y)
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for all x, y such that ρ(x, y) > r, and so(∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

(3.11)

≤
(∫

X

∣∣∣K[F−TψF ](
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

.

Now

F − TψF =
∑
j∈N

[φj](R−1)[F − TψF ](3.12)

= [φ0](R−1)[F − TψF ]−
∑
j∈Z+

[φj](R−1)TψF,

since if j ≥ 1, then supp[φj](R−1) ⊆ [−2j+2R,−2jR]∪ [2jR, 2j+2R], and supp(F ) ⊆ [−R,R],
so that [φj](R−1)F = 0. It follows that(∫

B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤
(∫

X

∣∣∣K[φ0](R−1)[F−TψF ](
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

(3.13)

+
∑
j∈Z+

(∫
X

∣∣∣K[φj ](R−1)TψF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

.

To deal with the first term, recall that supp(φ0) ⊆ [−4, 4], so that supp[φ0](R−1) ⊆
[−4R, 4R], and by hypothesis (3.7),(∫

X

∣∣∣K[φ0](R−1)[F−TψF ](
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C VD,d(4R)1/2
∥∥φ0[F − TψF ](R)

∥∥
Lp

≤ C VD,d(4R)1/2
∥∥F(R) − Tψ0F(R)

∥∥
Lp

= C VD,d(4R)1/2
∥∥∥∑
n∈N

Tφn [I − Tψ0 ]F(R)

∥∥∥
Lp
.

Now φn[1 − ψ0] = φn[1 − φ0( · /4rR)], and this is zero unless 2n ≥ 2rR. Consequently,
Tφn [I − Tψ0 ]F(R) = 0 unless n ≥ N0, where N0 = log2(2rR), and(∫

X

∣∣∣K[φ0](R−1)[F−TψF ](
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C VD,d(4R)1/2
∑
n≥N0

∥∥Tφn [I − Tψ0 ]F(R)

∥∥
Lp

≤ C ′ VD,d(R)1/2
∑
n≥N0

∥∥TφnF(R)

∥∥
Lp

(3.14)

≤ C ′ VD,d(R)1/2 2−N0s
∑
n≥N0

2ns
∥∥TφnF(R)

∥∥
Lp

≤ C ′′ VD,d(R)1/2 (rR)−s
∥∥F(R)

∥∥
Bp,∞s

.
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Now we treat the summed term in formula (3.13). Since

supp([φj](R−1)TψF ) ⊆ [−2j+2R, 2j+2R],

hypothesis (3.7) implies that(∫
X

∣∣∣K[φj ](R−1)TψF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C VD,d(2
j+2R)1/2

∥∥[[φj](R−1)TψF ](2j+2R)

∥∥
Lp

(3.15)

≤ C VD,d(2
j+2R)1/2

∥∥[φjTψ0F(R)](2j+2)

∥∥
Lp

≤ C VD,d(R)1/2 2max(d,D)(j+2)/2 2−(j+2)/p
∥∥φjTψ0F(R)

∥∥
Lp
.

Choose l such that l > max(d,D, 2s)/2 + 1. Then, since φ0 is in S(R), there exists a

constant Cl such that φ̂0(s) ≤ Cl(1 + |s|)−l for all s in R, and so

ψ̂0(s) ≤
4rRCl

(1 + 4rR|s|)l
∀s ∈ R.

Thus, if t ≥ 2, then ∣∣Tψ0F(R)(t)
∣∣ ≤ ∫

R

∣∣F(R)(t− s)
∣∣ 4rRCl
(1 + 4rR|s|)l

ds

≤ 2Cl
∥∥F(R)

∥∥
L1

4rR

(1 + 4rR|t− 1|)l

≤ 4Cl
∥∥F(R)

∥∥
Lp

1

(1 + 4rR|t− 1|)l−1
.

It follows that∥∥φjTψ0F(R)

∥∥
Lp
≤ 4Cl

∥∥F(R)

∥∥
Lp

(∫ 2j+2

2j

1

(1 + 4rR|t− 1|)p(l−1)
dt

)1/p

(3.16)

≤ 4Cl
∥∥F(R)

∥∥
Lp

31/p 2j/p
1

(1 + 4rR|2j − 1|)l−1
.

Combining estimates (3.15) and (3.16) and the fact that l > max(d,D, 2s)/2 + 1, we
conclude that∑

j∈Z+

(∫
X

∣∣∣K[φjTψ0
F(R)](R−1)(

√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C VD,d(R)1/2
∑
j∈Z+

2max(d,D)(j+2)/2 2−(j+2)/p
∥∥φjTψ0F(R)

∥∥
Lp

(3.17)

≤ 4C Cl (3/4)1/p VD,d(R)1/2
∥∥F(R)

∥∥
Lp

∑
j∈Z+

2max(d,D)(j+2)/2

(1 + 4rR|2j − 1|)l−1

≤ C ′ ∥∥F(R)

∥∥
Lp
VD,d(R)1/2 (rR)−s.

Combining estimates (3.13), (3.14) and (3.17) proves (3.8).
To prove (3.10), we note that if suppF ⊆ [−N,N ] then supp(ξ ∗ F ) ⊆ [−N − 1, N + 1].

Further,

(3.18) |ξ ∗ F (λ)| ≤ ‖ξ‖Lp′
(∫ λ+1

λ−1

|F (λ′)|p dλ′
)1/p

,
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so ∥∥(ξ ∗ F )(N+1)

∥∥
N+1,p

=

(
1

N + 1

N+1∑
i=1

sup
λ∈[ i−1

N+1
, i
N+1

]

|ξ ∗ F ((N + 1)λ)|p
)1/p

(3.19)

≤ ‖ξ‖Lp′
(N + 1)1/p

(N+1∑
i=1

∫ i+1

i−2

|F (λ′)|p dλ′
)1/p

≤ ‖ξ‖Lp′ (3N)1/p

(N + 1)1/p

∥∥F(N)

∥∥
Lp

≤ C
∥∥F(N)

∥∥
Lp
.

Then hypothesis (3.9) implies that(∫
X

∣∣∣Kξ∗F (
√
L)(x, · )

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C Nd/2
∥∥F(N)

∥∥
Lp

(3.20)

for all positive integers N . In order to prove (3.10), we may assume that rN > 1, since
otherwise the matter is again trivial. We now repeat the proof of (3.8), with F replaced
by ξ ∗ F on the left hand side, and R replaced by N .

The argument leading to (3.11) shows that(∫
B(y,r)c

∣∣∣Kξ∗F (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤
(∫

X

∣∣∣Kξ∗[F−TψF ](
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

.

The analogue of formula (3.12) is

ξ ∗ [F − TψF ] = ξ ∗ ([φ0](N−1)[F − TψF ])−
∑
j∈Z+

ξ ∗ ([φj](N−1)[TψF ]),

and so (∫
B(y,r)c

∣∣∣Kξ∗F (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤
(∫

X

∣∣∣Kξ∗([φ0](N−1)[F−TψF ])(
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

(3.21)

+
∑
j∈Z+

(∫
X

∣∣∣Kξ∗([φj ](N−1)TψF )(
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

.

To deal with the first term, observe that supp([φ0](N−1)[F − TψF ]) ⊆ [−4N, 4N ], so that,
by estimate (3.20),(∫

X

∣∣∣Kξ∗([φ0](N−1)[F−TψF ])(
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C Nd/2
∥∥φ0[F − TψF ](N)

∥∥
Lp

≤ C ′Nd/2 (rN)−s
∥∥F(N)

∥∥
Bp,∞s

,

by the argument leading to (3.14).
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Now we treat the summed term in formula (3.21). Since

supp([φj](N−1)TψF ) ⊂ [−2j+2N, 2j+2N ],

the estimate (3.20) implies that(∫
X

∣∣∣Kξ∗([φj ](N−1)TψF )(
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C (2j+2N)d/2
∥∥[φjTψ0F(N)](2j+2)

∥∥
Lp
.

These terms may be estimated and summed as before, and (3.10) follows. This ends the
proof of Lemma 3.4. �

Now we show how to use Theorem 3.3 and Lemma 3.4 to prove a general multiplier
theorem. Assumptions 2.1, 2.2, 2.3 and 2.4 are all needed.

Theorem 3.5. Suppose that s > max(d,D)/2, and that

(3.22) sup
y∈X

(∫
X

∣∣∣KF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C VD,d(R)1/2
∥∥F(R)

∥∥
Lp
,

for all R in R+ and all F in BR(R). Then for all bounded Borel functions F such

that supt∈R+

∥∥η F(t)

∥∥
Bp,∞s

< ∞, the operator F (
√
L) is of weak type (1, 1) and is bounded

on Lr(X) for all r in (1,∞); further,

(3.23)
∥∥∥F (

√
L)

∥∥∥
L1→L1,∞

≤ C

(
sup
t∈R+

∥∥η F(t)

∥∥
Bp,∞s

+ ‖F‖L∞
)
.

Remark. If we take p equal to ∞ and w equal to 1, then we obtain Alexopoulos’ mul-
tiplier theorem. Indeed, Assumption 2.5 is (3.22) with p equal to ∞. Recall that the
Lipschitz space Λs is included in the Besov space B∞,∞

s , so that our result implies the
result formulated in [3].

Proof. By the remark at the end of Subsection 2.1, it suffices to prove the weak type (1, 1)
estimate (3.23). In light of Theorem 3.3, it suffices to prove that

sup
y∈X

∫
B(y,r)c

∣∣∣KF (1−Φ(r))(
√
L)(x, y)

∣∣∣ dµ(x) ≤ C sup
t∈R+

∥∥η F(t)

∥∥
Bp,qs

.

By Lemma 3.4,

(3.24)

(∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ Cs
VD,d(R)1/2

(1 + rR)s
∥∥F(R)

∥∥
Bp,qs

for all r and R in R+, all y in X, and all F in BR(R). Our first step is to show that

(3.25)

∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x) ≤ Cs (1 + rR)max(d,D)/2−s ∥∥F(R)

∥∥
Bp,qs

for all r and R in R+, all y in X, and all F in BR(R). To prove this, we first suppose that
rR > 1. Fix y in X and write Ak for the annulus

{
x ∈ X : 2kr < ρ(x, y) ≤ 2k+1r

}
. Then,
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by the Cauchy–Schwarz inequality and the definition of (d,D) regular weights (2.1),∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x)

≤
∑
k∈N

∫
Ak

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x)

≤
∑
k∈N

(∫
Ak

w−1(x, y) dµ(x)

)1/2(∫
Ak

∣∣∣KF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤
∑
k∈N

(
Vd,D(2k+1r)

∫
B(y,2kr)c

∣∣∣KF (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

.

Now

Vd,D(2k+1r) = Vd,D(2k+1rR/R)

≤ (2k+1rR)max(d,D) Vd,D(R−1) = (2k+1rR)max(d,D) VD,d(R)−1,

and so, from the last two inequalities and (3.24),∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x) ≤ Cs
∑
k∈N

(2k+1rR)max(d,D)/2

(1 + 2krR)s
∥∥F(R)

∥∥
Bp,qs

≤ C ′
s (1 + rR)max(d,D)/2−s ∥∥F(R)

∥∥
Bp,qs

,

proving (3.25) in this case. When rR ≤ 1, we define the annuli Ak using R−1 instead of r,
and write A for the set {x ∈ X : r < ρ(x, y) ≤ R−1}. Then∫

B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x)(3.26)

≤
∫
A

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x) +
∑
k∈N

∫
Ak

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x);

the additional integral is treated in the same way as the integrals over the annuli Ak and
the general case of (3.25) follows.

Choose an even function ω in S(R) supported in [1/4, 1] ∪ [−1/4,−1] such that∑
n∈Z

ω(2nλ) = 1 ∀λ ∈ R+,

and let ωn denote the function ω(2−n·). Then

F (1− Φ(r))(
√
L) =

∑
n∈Z

ωnF (1− Φ(r))(
√
L).

From (3.25),

sup
y∈X

∫
B(y,r)c

∣∣∣KF (1−Φ(r))(
√
L)(x, y)

∣∣∣ dµ(x)

≤
∑
n∈Z

sup
y∈X

∫
B(y,r)c

∣∣∣KωnF (1−Φ(r))(
√
L))(x, y)

∣∣∣ dµ(x)

≤ Cs
∑
n∈Z

(1 + 2nr)max(d,D)/2−s ∥∥ωnF (1− Φ(r))(2n)

∥∥
Bp,qs

.
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Now for any Besov space Bp,q
s (R), if k is an integer greater than s, then∥∥[ωnF (1− Φ(r))](2n)

∥∥
Bp,qs

≤ C
∥∥[ωnF ](2n)

∥∥
Bp,qs

∥∥[1− Φ(r)](2n)

∥∥
Λk([1/4,1])

(see [36, Corollary 4.2.2]), and from inequality (3.1),∥∥[1− Φ(r)](2n)

∥∥
Λk([1/4,1])

≤ C
(2nr)k+1

1 + (2nr)k+1
.

It follows that

sup
y∈X

∫
B(y,r)c

∣∣∣KF (1−Φ(r))(
√
L)(x, y)

∣∣∣ dµ(x)

≤ C
∑
n∈Z

(2nr)k+1

1 + (2nr)k+1
(1 + 2nr)max(d,D)/2−s ∥∥[ωnF ](2n)

∥∥
Bp,qs

≤ C sup
n∈Z

∥∥[ωnF ](2n)

∥∥
Bp,qs

,

as required to prove the theorem. �

Our next general theorem relates to the case where D = 0. Again, Assumptions 2.1, 2.2,
2.3 and 2.4 are all needed.

Theorem 3.6. Suppose that D = 0, that s > max(d/2, 1/p), and that q ≤ min(p, 2).
Suppose also that

(3.27)

(∫
X

∣∣∣KF (
√
L)(x, · )

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C Nd/2
∥∥F(N)

∥∥
N,p

for all positive integers N and all F in BN(R). Then for all bounded Borel functions

F such that supt∈R+

∥∥η F(t)

∥∥
Bp,qs

< ∞, the operator F (
√
L) is of weak type (1, 1) and is

bounded on Lr(X) for all r in (1,∞); further,

(3.28)
∥∥∥F (

√
L)

∥∥∥
L1→L1,∞

≤ C

(
sup
t∈R+

∥∥η F(t)

∥∥
Bp,∞s

+ ‖F‖L∞
)
.

Remark. In light of (3.27) and (2.3), F (
√
L) is bounded on L1(X) if F is bounded and

suppF is compact. Thus we can replace the supremum in (3.28) by supt>T
∥∥η F(t)

∥∥
Bp,∞s

for

any finite T .

Proof. Without loss of generality, we may assume that p < ∞, since otherwise the result
is a consequence of the previous theorem. As in the previous theorem, it suffices to prove
the weak type (1, 1) estimate (3.28). Choose ξ in S(R) which is even and has support

in [−1, 1], and such that ξ̂(0) = 1 and ξ̂(l)(0) = 0 if 1 ≤ l ≤ k − 1 for some even positive
integer k greater than s. By Lemma 3.4,(∫

B(y,r)c

∣∣∣Kξ∗F (
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ Cs
VD,d(R)1/2

(1 + rR)s
∥∥F(R)

∥∥
Bp,qs

for all r and R in R+ and all F in BR(R).
By repeating the proof of the previous theorem, we may easily show that

sup
y∈X

∫
B(y,r)c

∣∣∣Kξ∗F (
√
L)(x, y)

∣∣∣ dµ(x) ≤ Cs(1 + rR)d/2−s
∥∥F(R)

∥∥
Bp,qs
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for all r and R in R+ and all F in BR(R), and hence deduce that∥∥∥ξ ∗ F (
√
L)

∥∥∥
L1→L1,∞

≤ C sup
t∈R+

∥∥η F(t)

∥∥
Bp,qs

.

To complete the proof, we will show that∥∥∥F (
√
L)− ξ ∗ F (

√
L)

∥∥∥
L1→L1

≤ C sup
t∈R+

∥∥η F(t)

∥∥
Bp,qs

.

Suppose that N is in Z+, that suppG ⊆ [−N,N ], and that
∥∥G(N)

∥∥
Bp,qs

<∞. We claim

that supp[G− ξ ∗G] ⊆ [−N − 1, N + 1], and that

(3.29)
∥∥[G− ξ ∗G](N+1)

∥∥
N+1,p

≤ C (N + 1)−s
∥∥G(N+1)

∥∥
Bp,qs

.

Assuming this claim for the moment, then the theorem follows. Indeed, write Hn for
φnF − ξ ∗ (φnF ); then F − ξ ∗ F =

∑
n∈NHn. Since suppHn ⊆ [−2n+2 − 1, 2n+2 + 1], it

follows from (2.3) and (3.27) that∥∥∥Hn(
√
L)

∥∥∥
L1→L1

≤ C sup
y∈X

(∫
X

∣∣∣KHn(
√
L)(x, y)

∣∣∣2w(x, y) dµ(x)

)1/2

≤ C ′(2n+2 + 1)d/2
∥∥[Hn](2n+2+1)

∥∥
2n+2+1,p

,

and from our claim it then follows that∥∥∥F (
√
L)− ξ ∗ F (

√
L)

∥∥∥
L1→L1

≤
∑
n∈N

∥∥∥Hn(
√
L)

∥∥∥
L1→L1

≤
∑
n∈N

C ′(2n+2 + 1)d/2
∥∥[φnF − ξ ∗ (φnF )](2n+2+1)

∥∥
2n+2+1,p

≤
∑
n∈N

C ′(2n+2 + 1)d/2 (2n+2 + 1)−s
∥∥[φnF ](2n+2+1)

∥∥
Bp,qs

≤ C sup
t∈R+

∥∥η F(t)

∥∥
Bp,qs

,

as required.
To prove our claim (3.29), we write ζ for the function on R defined by the condition

that
ζ̂ =

(
1− ξ̂

)
| · |−s .

Observe first that

(3.30)

(∑
i∈Z

sup
t∈[i−1,i]

|ζ ∗H|p
)1/p

≤ C ‖H‖Lp ∀H ∈ Lp(R).

Indeed, Fourier analysis shows that |ζ(t)| ≤ C1|t|s−1 when |t| ≤ 1 and |ζ(t)| ≤ C2|t|s−k−1

when |t| ≥ 1. Therefore we may write ζ as
∑

j∈Z ζj(· − j), where supp ζj ⊆ [−1, 1] and∑
j∈Z ‖ζj‖Lp′ < ∞ (this is where we require that s > 1/p). The argument of (3.18) and

(3.19) then shows that (3.30) holds.
The proof of our claim (3.29) is now straightforward. Indeed,∥∥[G− ξ ∗G](N+1)

∥∥
N+1,p

=

(
1

N + 1

N+1∑
i=1

sup
t∈[ i−1

N+1
, i
N+1

]

|[G− ξ ∗G]((N + 1)t)|p
)1/p

≤ (N + 1)−1/p

( ∞∑
i=−∞

sup
t∈[i−1,i]

|ζ ∗ IG(t)|p
)1/p

,
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where ζ is as above and (IG)̂ = | · |sĜ. Therefore, by (3.30),∥∥[G− ξ ∗G](N+1)

∥∥
N+1,p

≤ C (N + 1)−1/p ‖IG‖Lp
≤ C (N + 1)−s

∥∥I[G(N+1)]
∥∥
Lp

≤ C (N + 1)−s
∥∥G(N+1)

∥∥
Bp,qs

,

since ‖IG‖Lp ≤ C ‖G‖Bp,qs when q ≤ min(p, 2) (see, e.g., [33, p. 155]). This proves our
claim and hence the theorem. �

4. Spectral multipliers on SU(2)

The Euler angles are the usual coordinates on SU(2). However, to study the operator
L defined by (1.2) it is much more convenient to use another coordinate system, which we
now describe.

Let B be the ball in R2 of radius π/2 and centre 0. For (x, y, z) ∈ B× [−π, π], we write

Ψ(x, y, z) = exp(xX + yY ) exp(zZ),

where X, Y, Z are defined by (1.1). Next, we write x = r cos θ and y = r sin θ, and define
Φ by the formula

Φ(r, θ, z) = Ψ(x, y, z).

Now we compute the operator L in the coordinates given by Φ. First we note that

exp(xX + yY ) = exp

(
0 eiθr

−e−iθr 0

)
=

(
cos r eiθ sin r

−e−iθ sin r cos r

)
and

exp(xX + yY ) exp(zZ) =

(
eiz cos r ei(θ−z) sin r

−e−i(θ−z) sin r e−iz cos r

)
.

Now

exp(xX + yY ) exp(tX) =

(
cos r cos t− eiθsin r sin t cos r sin t+ eiθsin r cos t

− cos r sin t− e−iθsin r cos t cos r cos t− e−iθsin r sin t

)
and

exp(xX + yY ) exp(tY ) =

(
cos r cos t+ ieiθ sin r sin t i cos r sin t+ eiθ sin r cos t
i cos r sin t− eiθ sin r cos t cos r cos t− ieiθ sin r sin t

)
.

Further,

exp(xX + yY ) exp(zZ) exp(tX) = exp(xX + yY ) exp(tAdzZX) exp(zZ).

It follows that

X = cos(−θ + 2z) ∂r + sin(−θ + 2z)(tan r(∂z + ∂θ) + cot r ∂θ),

Y = − sin(2z − θ)∂r + cos(2z − θ)(tan r(∂z + ∂θ) + cot r ∂θ).

Thus (see [27]), X2 + Y 2 is equal to

∂2
r + (cot r − tan r) ∂r + cot2 r ∂2

θ + 2∂θ(∂z + ∂θ) + tan2 r (∂z + ∂θ)
2.(4.1)

Note that L commutes with ∂θ. This implies that the convolution kernel K̃F (
√
L) associated

to a function of the sublaplacian is independent of θ. Further, we also note that Z = ∂z
and that Haar measure dg is given by the formula

(4.2) dg = sin(2r(g)) dr dθ dz.
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For future purposes, observe that, for a smooth function φ on [0, π/2],∫ π/2

0

φ(r)
(
φ′′(r) + (cot r − tan r)φ′(r)

)
sin(2r) dr

=

∫ π/2

0

(
φ(r) sin(2r)

)
φ′′(r) dr + 2

∫ π/2

0

φ(r)φ′(r)
(
cos2 r − sin2 r

)
dr

= −
∫ π/2

0

(
φ(r) sin(2r)

)′
φ′(r) dr + 2

∫ π/2

0

φ(r)φ′(r) cos(2r) dr(4.3)

= −
∫ π/2

0

sin(2r)φ′(r)2 dr

≤ 0.

We recall briefly the representation theory of SU(2); see, e.g., [35] or [38] for more details.
The action of SU(2) on C2 induces an action πl on the spaceHl of homogeneous polynomials
of degree l in two complex variables. The obvious basis for this space is composed of the
polynomials zj1z

l−j
2 , where j = 0, 1, . . . , l. The operator dπ(Z) is represented by a diagonal

matrix in this basis, with entries −il, i(2− l), . . . , im, . . . , il; the integer m is known as a
weight. The operator − dπ(X2 + Y 2 +Z2) acts as the scalar l(l+ 2) on Hl, whence dπ(L)
acts by multiplying vectors of weight m by l(l + 2)−m2. In particular, this implies that

(4.4)

∫
SU(2)

∣∣∣K̃F (
√
L)(h)

∣∣∣2 dh =
∑

(l,m)∈Λ

(l + 1)
∣∣∣F (

√
l(l + 2)−m2)

∣∣∣2 ,
where Λ is the set of all (l,m) in N×Z such that |m| ≤ l and l−m is even, and (as before)

K̃F (
√
L) denotes the convolution kernel of the operator F (

√
L).

Let µn be the measure on SU(2) given by

µn(f) =
1

2π

∫ π

−π
f(exp(zZ)) e−inz dz ∀f ∈ C(SU(2)).

Then πl(µ
n) is the projection onto the vectors of weight n in Hl. This implies that the

operator πl(K̃F (
√
L) ∗ µn) annihilates all the weight vectors of weight different from n, and

multiplies vectors of weight n by F (
√
l(l + 2)− n2). The next lemma is the new ingredient

needed for the proof of Theorem 1.1.

Lemma 4.1. Suppose that N is in Z+, that F is in BN(R), and that α is in (0, 1). Then∫
SU(2)

∣∣∣K̃F (
√
L)(g)

∣∣∣2 |r(g)|α dg ≤ CN4−α ∥∥F(N)

∥∥2

N,p
.

Proof. We write K̃n
F (
√
L)

for K̃F (
√
L) ∗ µn. By Fourier series,∫

SU(2)

∣∣∣K̃F (
√
L)(h)

∣∣∣2 r(h)α dh =
∑
n∈Z

∫
SU(2)

∣∣∣K̃n
F (
√
L)

(h)
∣∣∣2 r(h)α dh.

Fix N in Z+. We write S for the integer interval (−N/2, N/2) ∩ Z, and T for its
complement in Z, i.e., Z \ (−N/2, N/2). For n in S, we use the simple estimate that

(4.5)

∫
SU(2)

∣∣∣K̃n
F (
√
L)

(h)
∣∣∣2 r(h)α dh ≤

∫
SU(2)

∣∣∣K̃n
F (
√
L)

(h)
∣∣∣2 dh.
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For n in T , we use a more subtle estimate. From (4.1), (4.2), and (4.3), it follows that, for
a smooth function f on SU(2), if ∂θf = 0 and Pnf = f , then

〈Lf, f〉 ≥ n2 ‖f tan r‖2
L2

and so

〈Lαf, f〉 ≥ n2α ‖f tanα r‖2
L2

when α is in [0, 1]. Indeed, for any quadratic forms A and B, if A ≥ B ≥ 0 then Aα > Bα

for all α in [0, 1]. Hence∫
SU(2)

∣∣∣K̃n
F (
√
L)

(h)
∣∣∣2 r(h)α dh ≤

∫
SU(2)

∣∣∣K̃n
F (
√
L)

(h)
∣∣∣2 tanα r(h) dh

≤ 1

nα
〈Lα/2K̃n

F (
√
L)
, K̃n

F (
√
L)
〉(4.6)

=
1

nα

∥∥∥Lα/4K̃n
F (
√
L)

∥∥∥2

L2

=
1

nα

∥∥∥K̃n
G(
√
L)

∥∥∥2

L2
,

where G(λ) = λα/2F (λ).
Define the regions Hk, S and T by the formulae

Hk =
{
(x, y) ∈ R2 : ((k − 1)2 + y2 + 1)1/2 − 1 < x ≤ (k2 + y2 + 1)1/2 − 1

}
,

S =
{
(x, y) ∈ R2 : |y| < dN/2e, |y| ≤ x ≤ (N2 + y2 + 1)1/2 − 1

}
,

T =
{
(x, y) ∈ R2 : |y| ≥ dN/2e, |y| ≤ x ≤ (N2 + y2 + 1)1/2 − 1

}
.

The integer lattice points in S and T will be denoted by Σ and T respectively, and T+

will denote the subset of T in the first quadrant. The “bottom right hand corner” of T+,
which is also the “top right hand corner” of S, is the point (u, v), where v = dN/2e and
u = (N2 + dN/2e2 + 1)1/2 − 1.

By virtue of (4.5) and (4.4),∑
n∈S

∫
SU(2)

∣∣∣K̃n
F (
√
L)

(h)
∣∣∣2 r(h)α dh ≤

∑
(l,n)∈Σ

(l + 1)
∣∣∣F(√

l(l + 2)− n2
)∣∣∣2

=
N∑
k=0

∑
(l,n)∈Σ∩Hk

(l + 1)
∣∣∣F(√

l(l + 2)− n2
)∣∣∣2(4.7)

≤
N∑
k=0

∑
(l,n)∈Σ∩Hk

(l + 1) sup
t∈[k−1,k]

|F (t)|2

≤ N ‖F‖2
N,2 max

0≤k≤N

∑
(l,n)∈Σ∩Hk

(l + 1).

To estimate
∑

(l,n)∈Σ∩Hk(l+1), observe that the line y = n meets Hk in a segment of length(√
k2 + n2 + 1− 1

)
−

(√
(k − 1)2 + n2 + 1− 1

)
< 2.

Thus at any fixed height, there are at most two points of Λ inside Hk. Further, if (x, y) ∈ S,
then

x+ 1 < u+ 1 < 2N,
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and so ∑
(l,n)∈Σ∩Hk

(l + 1) ≤
dN/2e−1∑

n=−dN/2e+1

4N ≤ 4N2;

combining this with (4.7) shows that∑
n∈S

∫
SU(2)

∣∣∣K̃n
F (
√
L)

(h)
∣∣∣2 r(h)α dh ≤ 4N3 ‖F‖2

N,2 .

Similarly, by virtue of (4.6) and (4.4),∑
n∈T

∫
SU(2)

∣∣∣K̃n
F (
√
L)

(h)
∣∣∣2 r(h)α dh

≤
∑

(l,n)∈T

(l + 1)

(
l(l + 2)− n2

)α/2
|n|α

∣∣∣F(√
l(l + 2)− n2

)∣∣∣2
≤ 4

∑
(l,n)∈T

(l + 1)1−α(l(l + 2)− n2
)α/2 ∣∣∣F(√

l(l + 2)− n2
)∣∣∣2 ,

since, if (x, y) ∈ T , then 3|y| ≥ x and |y| ≥ 1, so that 4|y| ≥ x+ 1. Thus, by the argument
to prove (4.7),∑

n∈T

∫
SU(2)

∣∣∣K̃n
F (
√
L)

(h)
∣∣∣2 r(h)α dh

≤ 4
N∑
k=1

∑
(l,n)∈T∩Hk

(l + 1)1−α(l(l + 2)− n2
)α/2 ∣∣∣F(√

l(l + 2)− n2
)∣∣∣2(4.8)

≤ 4
N∑
k=1

kα
∑

(l,n)∈T∩Hk

(l + 1)1−α
∣∣∣F(√

l(l + 2)− n2
)∣∣∣2

≤ 4Nα+1 ‖F‖2
N,2 max

1≤k≤N

∑
(l,n)∈T∩Hk

(l + 1)1−α.

To prove the lemma, it therefore remains to show that, if 1 ≤ k ≤ N , then

(4.9)
∑

(l,n)∈T∩Hk

(l + 1)1−α ≤ C N3−2α.

Observe that, if h ≥ 0, then the line y = x−2h meets Hk in the line segment Lh,k, where

(k − 1)2 < (x+ 1)2 − (x− 2h)2 − 1 ≤ k2.

This inequality implies that

(k − 1)2 + 4h2

4h+ 2
< x ≤ k2 + 4h2

4h+ 2
,

so the number of points in Λ ∩ Lh,k is at most (2k − 1)/(4h+ 2). It also implies that

(2h+ 1)(2x− 2h+ 1) = (x+ 1)2 − (x− 2h)2 ≤ k2 + 1,

whence, for (x, y) in Lh,k,

2x+ 1 ≤ k2 + 1

2h+ 1
+ 2h.
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Using these facts, inequality (4.8), and symmetry, we conclude that∑
(l,n)∈T∩Hk

(l + 1)1−α = 2
∑

(l,n)∈T+∩Hk

(l + 1)1−α

≤ 2

b(u−v)/2c∑
h=0

2k − 1

4h+ 2

(
k2 + 1

2h+ 1
+ 2h

)1−α

≤ 2

b(u−v)/2c∑
h=0

(
k3−2α

(2h+ 1)2−α +
k

(2h+ 1)α

)

≤ 2

b(u−v)/2c∑
h=0

(
N3−2α

(2h+ 1)2−α +
N

(2h+ 1)α

)
≤ CαN

3−2α,

as α ∈ [0, 1). This ends the proof of (4.9) and Lemma 4.1. �

Proof of Theorem 1.1. Take ρ to be the left-invariant control distance associated with the
sublaplacian L on SU(2); in cylindrical coordinates, this is equivalent to the left-invariant
metric ρ′ defined by the condition

ρ′(h, e) = (r(h)4 + z(h)2)1/4 ∀h ∈ SU(2).

Assumption 2.1 (the doubling condition) holds for the control metric, as for all sublapla-
cians on groups of polynomial growth.

Fix α in [0, 1), and define the weight w by the condition w(x, y) = w̃(y−1x), where, in
cylindrical coordinates,

w̃(h) = r(h)α.

It is easy to check Assumption 2.2 for this weight. Assumption 2.3 holds for the operator L
and metric ρ; see [24, 31]. Finally, Assumption 2.4 follows from the standard estimates for
the heat kernel associated to L on SU(2); see [28, 37]. Together with Lemma 4.1, we thus
have all the conditions necessary to apply Theorem 3.6, and Theorem 1.1 is proved. �

5. Remarks and comments on the Heisenberg group

Let H1 be the Heisenberg group and LH1 be the homogeneous sublaplacian on H1, see,
e.g., [25]. It is shown in [27] (see the proposition on p. 587 and the theorem on p. 574)
that if the operator L is defined by (1.2) then∥∥∥F (

√
LH1)

∥∥∥
Lp(H1)→Lp(H1)

≤ C lim sup
t→0

‖F (tL)‖Lp(SU(2))→Lp(SU(2))

for any p in [1,∞). Thus from Theorem 1.1, we get the following corollary.

Corollary 5.1. Suppose that s > 3/2 and that F : R → C is a continuous function such
that

sup
t∈R+

∥∥η F(t)

∥∥
Hs
<∞.

Then F (
√
LH1) is bounded on Lp(H1) when 1 < p <∞.

This gives an alternative proof of the spectral multiplier theorem for Heisenberg group
of Hebisch and of Müller and Stein. In [25], it is shown that Corollary 5.1 is sharp, in the
sense that it is false for any s < 3/2. It follows that Theorem 1.1 is sharp as well. Finally
we note that the proof of [25] may be extended to show the following result.
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Theorem 5.2. Suppose that G is a direct product of the form G1 × . . .×Gk, where each
factor Gj is a Heisenberg group Hnj , a Euclidean group Rnj , or SU(2), and that L is a
sum L1 + . . . + Lk of sublaplacians Lj on Gj. If s > (1/2) dimG and F is bounded and

supt∈R+

∥∥η F(t)

∥∥
Hs
<∞, then F (

√
L) is of weak type (1, 1) and is bounded on Lp(G) when

1 < p <∞.
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[2] V.G. Avakumovič, Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten,
Math. Z. 65 (1956), 327–344.

[3] G. Alexopoulos, Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math. Soc.
120 (1994), 973–979.
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