
IMAGINARY POWERS OF LAPLACE OPERATORS

ADAM SIKORA AND JAMES WRIGHT

Abstract. We show that if L is a second-order uniformly elliptic operator in divergence
form on Rd, then C1(1+ |α|)d/2 ≤ ‖Liα‖L1→L1,∞ ≤ C2(1+ |α|)d/2. We also prove that the
upper bounds remain true for any operator with the finite speed propagation property.

1. Introduction. Assume that aij ∈ C∞(Rd), aij = aji for 1 ≤ i, j ≤ d and that
κI ≤ (aij) ≤ τI for some positive constants κ and τ . We define a positive self-adjoint
operator L on L2(Rd) by the formula

(1) L = −
∑

∂iaij∂j.

We refer readers to [8] for the precise definition and basic properties of L. In particular, L
admits a spectral resolution E(t) and we can define the operator Liα by the formula

Liα =

∫ ∞

0

tiαdE(t).

By spectral theory ‖Liα‖L2→L2 = 1. It is well known that Liα falls within the scope of
classical Calderón-Zygmund theory (as described in [3] or [22]) and so it extends to a
bounded operator on Lp, 1 < p < ∞, and is also weak type (1,1). The main aim of this
paper is to obtain the sharp estimate for the weak type (1, 1) norm of Liα in terms of α.

The study of imaginary powers of operators is an important part of the theory of opera-
tors of type ω with H∞ functional calculus, see e.g., [6], [9] and [17]. What is perhaps more
interesting and relevant from the point of view of this paper is that the weak type (1, 1)
norm of imaginary powers of self-adjoint operators can play a central role in the theory of
spectral multipliers. See [5] and [15]. Imaginary powers of Laplace operators on compact
Lie groups were also investigated in [20]. Theorem 2 below applied to Laplace operators
on compact Lie groups gives the sharp endpoint result of Theorem 3 in [20], pp. 58. See
also Corollary 4 of [20], pp. 121.

However, the starting point for this paper is the following observation from [2]. If
we denote the weak type (1,1) norm of an operator T on a measure space (X,µ) by
‖T‖L1→L1,∞ = supλ µ({x ∈ X : |Tf(x)| > λ}) where the supremum is taken over λ > 0
and functions f with L1(X) norm less than one, then for the standard Laplace operator on
Rd,

(2) C1(1 + |α|)d/2 ≤ ‖(−∆d)
iα‖L1→L1,∞ ≤ C2(1 + |α|)d/2 log(1 + |α|).

The classical Hörmander multiplier theorem (see [13]) states that a multiplier operator Tm

on Rd with multiplier m satisfies

(3) ‖Tm‖L1→L1,∞ ≤ Cs sup
t>0

‖η(·)m(t·)‖Hs ≤ A

for any s > d/2 and any η ∈ C∞
c (R+) not identically zero. Here Hs is the Sobolev space

of order s on Rd. Since the Sobolev norm in (3) behaves like (1 + |α|)s for the multiplier
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m(x) = |x|iα of (−∆)iα, (2) shows that the exponent d/2 in Hörmander’s theorem is sharp.
Furthermore, if (3) is satisfied with A < ∞, then the distribution K = m̂ agrees with a
locally integrable function away from the origin which satisfies

(4) I(B) = sup
y 6=0

∫
|x|≥B|y|

|K(x− y)−K(x)| dx ≤ A

for B ≥ 2 and Hörmander’s theorem actually shows that the weak type (1,1) norm of Tm is
bounded by I(B) + ‖m‖2

L∞ + Bd. One can easily compute that for the convolution kernel
K of (−∆)iα, the integral I(B) is bounded above and below by (1 + |α|)d/2 log(1 + |α|/B).
Hence Hörmander’s theorem gives the upper bound in (2). The lower bound is a simple
consequence of the explicit formula for the kernel K of (−∆)iα. See for example, [21] pp.
51-52.

The main observation of this paper is to note that there is a slight improvement of the
bound I(B) + ‖m‖2

L∞ +Bd to I(B) + (‖m‖2
L∞B

d)1/2. This can be achieved either by using
C. Fefferman’s ideas in [11] of exploiting more information of L2 bounds or by varying the
level of the Calderón - Zygmund decomposition and optimising. Hence we will be able to
remove the log term in (2). We will show that this more precise estimate holds for a general
class of operators.

Theorem 1. Suppose that L is defined by (1). Then

(5) C1(1 + |α|)d/2 ≤ ‖Liα‖L1→L1,∞ ≤ C2(1 + |α|)d/2

for all α ∈ R.

Proof of the lower bound. We begin with some known estimates for the kernel pt(x, y) of
the heat operator e−tL associated to L. Firstly, this kernel satisfies Gaussian bounds

(6) C1
1

td/2
e−b1ρ2(x,y)/t ≤ pt(x, y) ≤ C2

1

td/2
e−b2ρ2(x,y)/t

(see [8]) for some positive constants C1, C2, b1 and b2 and where ρ(x, y) denotes the geodesic
distance between x and y given by the Riemannian metric (ai,j). In this setting of uniform
ellipticity, κ|x − y| ≤ ρ(x, y) ≤ τ |x − y|. Secondly, from the construction of a parametrix
for the heat equation with respect to L (either via Hadamard’s construction, see §17.4 of
[14] , or using pseudodifferential operator techniques, see chapter 7, §13 of [23]), we have
for each y ∈ Rd, a ball B(y, r) such that for x ∈ B(y, r) and 0 < t < 1,

(7) |pt(x, y)− (det aij(y))
−1/2(4πt)−d/2e−ρ2(x,y)/4t| ≤ Ct1/2t−d/2.

Here we are using the fact that pt is symmetric, pt(x, y) = pt(y, x). ¿From (6) and (7), we
have for x ∈ B(y, r) the bound

|pt(x, y)− (det aij(y))
−1/2(4πt)−d/2e−ρ2(x,y)/4t| ≤ Ct1/4t−d/2 exp (−b′ρ(x, y)2/t)

which translates into a bound for the kernel KLiα of Liα since the functional calculus for L
gives us the relationship

Liα = Γ(−iα)−1

∫ ∞

0

t−iα−1e−tLdt

for α 6= 0. Thus for x ∈ B(y, r),

(8) |KLiα(x, y)− (det aij(y))
−1/24iαπ−d/2γ(α)ρ(x, y)−d−i2α| ≤ C|Γ(−iα)|−1ρ(x, y)−d+1/2
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where γ(α) = Γ(iα+ d/2)/Γ(−iα). Using (8) with y = 0 we obtain for λ large enough

µ({|KLiα(x, 0)| ≥ λ})≥µ({C1|γ(α)|ρ−d(x, 0) ≥ 2λ})−µ({C2|Γ(−iα)|ρ−d+ 1
2 (x, 0) ≥ λ})

= µ(B(0, (2C1|γ(α)|/λ)1/d))− µ(B(0, (C2|Γ(−iα)|/λ)1/(d−1/2))) ≥ C ′|γ(α)|/λ.
Here µ is Lebesgue measure and the sets above have the further restriction that x ∈
B(0, r). Since KLiα is smooth away from the diagonal, we see that Liαφδ(x) tends to
KLiα(x, 0) as δ → 0 for any x 6= 0 and any approximation of the identity {φδ}. Hence
the above estimate shows that the weak type (1,1) norm of Liα is bounded below by

|γ(α)|= |Γ(iα+ d/2)/Γ(−iα)|∼(1 + |α|) d
2 (see [10]).

The upper bound in Theorem 1 holds in a much more general setting which we describe
now. Assume that (X,µ, ρ) is a space with measure µ and metric ρ. If ‖P‖L2→L∞ < ∞
then we can define the kernel KP of the operator P by the formula

〈P (ψ), φ〉 =

∫
P (ψ)φdµ =

∫
KP (x, y)ψ(x)φ(y)dµ(x)dµ(y).

Note that supx ‖KP (x, ·)‖L2 = ‖P‖L2→L∞ . Next, we say that

(9) supp KP ⊂ {(x, y) ∈ X2 : ρ(x, y) ≤ r}
if 〈P (ψ), φ〉 = 0 for every φ, ψ ∈ L2 and every r1 + r2 + r < ρ(x′, y′) such that ψ(x) = 0
for ρ(x, x′) > r1 and φ(x) = 0 for ρ(x, y′) > r2. This definition (9) makes sense even if
‖P‖L2→L∞ = ∞. Now if L is a self-adjoint positive definite operator acting on L2(µ) then
we say that it satisfies the finite speed propagation property of the corresponding wave
equation if

(10) supp KCt(
√

L) ⊂ {(x, y) ∈ X2 : ρ(x, y) ≤ t},

where Ct(
√
L) =

∫
cos(t

√
λ) dE(λ).

Theorem 2. Suppose that L satisfies (10). Next assume that

(11) ‖ exp(−tL)‖2
L2→L∞ ≤ C1Vd,D(t1/2)−1 ≤ Cµ(B(x, t1/2))−1 ≤ C2Vd,D(t1/2)−1

for all t > 0 and x ∈ X, where B(x, t) is a ball with radius t centred at x and

Vd,D(t) =

{
td for t ≤ 1
tD for t > 1

for d,D ≥ 0. Then
‖Liα‖L1→L1,∞ ≤ C2(1 + |α|)max(d,D)/2

for all α ∈ R.

We remark that (10) and (11) are equivalent to having Gaussian upper bounds on the
heat kernel and the associated volume growth on balls. See [18]. Furthermore, the upper
bound in Theorem 1 follows from Theorem 2. Indeed, if X = Rd, ρ(x, y) = τ |x− y| and µ
is Lebesgue measure then it is well known (see e.g. [8] and [19]) that (11) and (10) hold.
We are going to prove Theorem 2 only in the case d = D. The argument for the other
cases is similar.

2. Preliminaries. The following lemma is a very simple but useful consequence of (10).

Lemma 1. Assume that L satisfies (10) and that F̂ is a Fourier transform of an even

bounded Borel function F with supp F̂ ⊂ [−r, r]. Then

supp KF (
√

L) ⊂ {(x, y) ∈ X2 : ρ(x, y) ≤ r}.
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Proof. If F is an even function, then by the Fourier inversion formula,

F (
√
L) =

1

2π

∫ +∞

−∞
F̂ (t)Ct(

√
L) dt.

But since supp F̂ ⊂ [−r, r],

F (
√
L) =

1

2π

∫ r

−r

F̂ (t)Ct(
√
L) dt

and Lemma 1 follows from (10).

Lemma 2. Let φ ∈ C∞
c (R) be even, φ ≥ 0, ‖φ‖L1 = 1, supp(φ) ⊂ [−1, 1], and set

φr(x) = 1/r φ(x/r) for r > 0. Let Φ denote the Fourier transform of φ and Φr denote the
Fourier transform of φr. If (11) and (10) hold, then the kernel KΦr(

√
L) of the self-adjoint

operator Φr(
√
L) satisfies

(12) supp KΦr(
√

L) ⊂ {(x, y) ∈ X2; ρ(x, y) ≤ r}

and

(13) |KΦr(
√

L)(x, y)| ≤ C r−d

for all r > 0 and x, y ∈ X.

Proof. (12) follows from Lemma 1. For any m ∈ N and r > 0, we have the relationship

(I + rL)−m =
1

m!

∞∫
0

e−rtLe−ttm−1 dt

and so when m > d/4, (11) implies

(14) ‖(I + rL)−m‖L2→L∞ ≤ 1

m!

∫ ∞

0

‖ exp (−rtL)‖L2→L∞e
−ttm−1dt ≤ C1 r

−d/4

for all r > 0. Now ‖(I + r2L)−m‖L1→L2 = ‖(I + r2L)−m‖L2→L∞ and so

‖Φr(
√
L)‖L1→L∞ ≤ ‖(I + r2L)2mΦr(

√
L)‖L2→L2 ‖(I + r2L)−m‖2

L2→L∞ .

The L2 operator norm of the first term is equal to the L∞ norm of the function
(1 + r2|t|)2mΦ(r

√
|t|) which is uniformly bounded in r > 0 and so (13) follows by (14).

Next we recall the Calderón-Zygmund decomposition in the general setting of spaces of
homogeneous type (see e.g. [3] or [22]) .

Lemma 3. There exists C such that, given f ∈ L1(X,µ) and λ > 0, one can decompose f
as

f = g + b = g +
∑

bi

so that

(1) |g(x)| ≤ Cλ, a.e. x and ‖g‖L1 ≤ C‖f‖L1.
(2) There exists a sequence of balls Bi = B(xi, ri) such that the support of each bi is

contained in Bi and ∫
|bi(x)|dµ(x) ≤ Cλµ(Bi).

(3)
∑
µ(Bi) ≤ C 1

λ

∫
|f(x)| dµ(x).
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(4) There exists k ∈ N such that each point of X is contained in at most k of the balls
B(xi, 2ri).

We are now in a position to prove Theorem 2.

3. Proof of Theorem 2. The proof follows closely the line of argument in [1] (which
of course generalises to this setting). We are out to prove

λµ({x ∈ X : |Liαf(x)| ≥ λ }) ≤ C(1 + |α|)
d
2 ‖f‖L1 .

As usual we start by decomposing f into g +
∑
bi at the level of λ according to Lemma 3.

We will follow the idea of C. Fefferman [11] of using more information of the L2 operator
norm (in our case, ‖Liα‖L2→L2 = 1) by smoothing out the bad functions bi at a scale
smaller than the size of it’s support and considering this part of the good function where
L2 estimates can be used (see also [4]). In our case for each bi, consider Φsi(

√
L)bi where

si = θri, θ = (1 + |α|)− 1
2 , and let G = g +

∑
Φsi(

√
L)bi be the modified good function.

Hence f = G+B where B =
∑

(I − Φsi(
√
L))bi and we write

(15) λµ({|Liαf(x)| ≥ λ}) ≤ λµ({|LiαG(x)| ≥ λ/2}) + λµ({|LiαB(x)| ≥ λ/2}).

The first term is less than 4/λ ‖LiαG‖2
L2 ≤ 4/λ ‖G‖2

L2 . However, according to Lemma 2,

|Φsi(
√
L)bi(x)| ≤

∫
|KΦsi (

√
L)(x, y)bi(y)| dµ(y) ≤ C (θri)

−d‖bi‖L111B(xi,2ri)

and therefore by Lemma 3, |G(x)| ≤ Cθ−dλ for a.e., x. Using Lemma 2 again which shows

that the Lp → Lp operator norms of Φr(
√
L) are uniformily bounded in r > 0, we also have

that ‖G‖L1 ≤ ‖g‖L1 +C
∑
‖Φsi(

√
L)bi‖L1 ≤ ‖g‖L1 +C

∑
‖bi‖L1 ≤ C‖f‖L1 . Therefore the

first term in (15) is bounded by (1 + |α|) d
2 ‖f‖L1 .

Since µ(∪B(xi, θ
−1ri)) ≤ Cθ−d

∑
µ(Bi) ≤ C(1+|α|) d

2‖f‖L1/λ, then to bound the second
term in (15), it suffices to show

(16)

∫
x/∈∪B∗i

|LiαB(x)| dµ(x) ≤ C(1 + |α|)
d
2‖f‖L1

where B∗
i = B(xi, θ

−1ri). Let Hα(t) = |t|2iα so that LiαB(x) =
∑
Hα(1 − Φsi)(

√
L)bi(x)

and therefore the left side of (16) is less than∑
i

∫
x/∈∪jB∗j

∣∣∣∫ KHα(1−Φsi )(
√

L)(x, y)bi(y) dµ(y)
∣∣∣ dµ(x)

≤
∑

i

∫
|bi(y)|

∫
x/∈B∗i

|KHα(1−Φsi )(
√

L)(x, y)| dµ(x) dµ(y).

Since F (L)∗ = F (L), we may interchange the roles of x and y, and so (16) will follow from
Lemma 3 once we establish

(17) sup
x,i

∫
ρ(x,y)≥ θ−1ri

|KHα(1−Φsi )(
√

L)(x, y)| dµ(y) ≤ C (1 + |α|)
d
2 .
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We now fix x ∈ X and i. Let η ∈ C∞
c (R) be an even function supported in {t ∈ R : 1 ≤

|t| ≤ 4} such that
∞∑

n=−∞

η(2−nt) = 1 for all t 6= 0.

We put Hα
n (t) = η(2−nt)Hα(t) so that

Hα(1− Φsi)(
√
L) =

∑
n

Hα
n (1− Φsi)(

√
L).

Thus

(18)

∫
y/∈B∗i

|KHα(1−Φsi )(
√

L)(x, y)| dµ(y) ≤
∑

n

∫
y/∈B∗i

|KHα
n (1−Φsi )(

√
L))(x, y)| dµ(y)

and we will estimate each term in the sum on the right side in terms of n and i, uniformly
in x ∈ X.

Let ko = [d/2] + 1 so that∫
y/∈B∗i

(1 + 2nρ(x, y))−2kodµ(y) ≤ C

∞∫
θ−1 ri

(1 + 2nr)−2k0rd−1dr ≤ C2−2nko(θ−1ri)
d−2ko

and therefore by the Cauchy-Schwarz inequality,

(19)

∫
y/∈B∗i

|KHα
n (1−Φsi )(

√
L))(x, y)| dµ(y)

≤ C 2−nko(θ−1ri)
d
2
−ko

( ∫
ρ(x,y)≥θ−1ri

|KHα
n (1−Φsi )(

√
L)(x, y)|

2(1 + 2nρ(x, y))2kodµ(y)
)1/2

.

We break up the integral on the right side of (19) where 2nρ(x, y) is roughly constant and
consider

(20)
∑

2j≥2nriθ−1

22jko

∫
2j−1−n<ρ(x,y)≤2j−n

|KHα
n (1−Φsi )(

√
L)(x, y)|

2 dµ(y).

Fix a nonnegative even ϕ ∈ C∞
c (R) such that ϕ = 1 on [−1/4, 1/4] and ϕ = 0 on

R \ [−1/2, 1/2] . Then the Fourier transforms of Hα
n (1−Φsi) and Hα

n (1−Φsi) ∗ (δ− ϕ̂2n−j)

agree on {ξ : |ξ| ≥ 2j−1−n} and so by Lemma 1, the kernels of Hα
n (1 − Φsi)(

√
L) and

Hα
n (1 − Φsi) ∗ (δ − ϕ̂2n−j)(

√
L) agree on the set {(x, y) ∈ X2 : ρ(x, y) ≥ 2j−1−n }. Here δ

denotes the Dirac mass at 0. For each j, the integrals in (20) satisfy the bound∫
2j−1−n<ρ(x,y)≤2j−n

|KHα
n (1−Φsi )(

√
L)(x, y)|

2 dµ(y) ≤ ‖KF α
n,j(

√
L)‖

2
L2→L∞

where we are defining Fα
n,j(t) = Hα

n (1 − Φsi) ∗ (δ − ϕ̂2n−j)(t). So by (14), the right side

of this inequality is bounded by ‖(I + 2−2nL)mFα
n,j(

√
L)‖2

L2→L2 2nd as long as m > d/4.

Everything then comes down to estimating the L∞ norm of (1 + 2−2nt2)mFα
n,j(t). We make

the following claim.

Claim: For each j, n and m > d/4,

(1 + 2−2nt2)m|Fα
n,j(t)| ≤ Cm|α|ko2−jko min(1, (2nriθ)

2) min(1, |α|2−j)

uniformly in t ∈ R.
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The claim shows that

‖KF α
n,j

(
√
L)‖L2→L∞ ≤ C |α|ko2−jko2

nd
2 min(1, (2nriθ)

2) min(1, |α|2−j)

and hence the sum in (20) is bounded by

|α|2ko2ndmin2(1, (2nriθ)
2)

∑
2j≥2nriθ−1

min2(1, |α|2−j) ≤ |α|2ko2ndmin2(1, (2nriθ)
2) log(2+

|α|
2nriθ−1

).

Recall that θ and α are related so that θ|α| = |α|/(1 + |α|) 1
2 ≤ θ−1. Plugging this into (19)

gives ∫
y/∈B∗i

|KHα
n (1−Φsi )(

√
L)(x, y)dµ(y) ≤ θ−d(2nriθ)

d
2
−ko min(1, (2nriθ)

2) log(2 +
1

2nriθ
)

and this makes the sum in (18) bounded by θ−d = (1 + |α|) d
2 , proving (17) and hence

Theorem 2.

Proof of the Claim. If Gn(t) = Hα
n (t)(1−Φsi(t)), then Fα

n,j(t) = 2(n−j)koG
(ko)
n ∗ ψ̂2n−j(t)

where ψ(ξ) = ξ−ko(1−ϕ(ξ)) (and so ψ̂ is continuous, rapidly decreasing and has vanishing

moments,
∫
t`ψ̂(t)dt = 0, ` = 0, 1, 2, ... ). Hence

Fα
n,j(t) = 2(n−j)ko

∫
R

[
G(ko)

n (t− s)−G(ko)
n (t)

]
ψ̂2n−j(s) ds

= 2(n−j)ko

∫
R

[
G(ko)

n (t− 2n−js)−G(ko)
n (t)

]
ψ̂(s) ds.

However Gn(t) = η(2−nt)|t|2iα(1 − Φ(sit)) and thereby each time we take a derivative, we

gain a factor of 2−n. G
(ko)
n (t) is thus a finite sum of terms of the form αp2−nko η̃(2−nt)|t|2iαΨ(sit)

where η̃ ∈ C∞
c (R), supp(η̃) ⊂ supp(η) and Ψ is a Schwartz function which is 0(t2) as t→ 0

(note that Φ′(0) =
∫
xφ(x)dx = 0 since φ is even). The worst power p is ko which occurs

when all derivatives land on the factor |t|2iα.
Without loss of generality, let us suppose that G(ko)(t) = αko2−nkoη(2−nt)|t|2iαΨ(sit).

¿From the above integral representation of Fα
n,j(t), we see that the main contribution to

(1 + 2−2nt2)m|Fα
n,j(t)| occurs when |t| ∼ 2n and in this case,

|Fα
n,j(t)| ≤ C|α|ko2(n−j)ko2−nko min(1, (si2

n)2) ≤ C|α|ko2−jko min(1, (2nriθ)
2).

However we may write

Fα
n,j(t) = −2(n−j)ko2n−j

1∫
0

∫
R

G(ko+1)
n (t− σ2j−ns)sψ̂(s) ds dσ

and therefore we also have

|Fα
n,j(t)| ≤ C|α|ko+12(n−j)ko2n−j2−n(ko+1) min(1, (si2

n)2) ≤ C|α|ko2−jko |α|2−j min(1, (2nriθ)
2),

establishing the claim.

Remarks. Theorem 1 holds also for Laplace-Beltrami operators on compact manifolds of
dimension d. The proof is essentially the same as the proof of Theorem 1.
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The hypotheses of Theorem 2 are satisfied for Laplace operators on Lie groups of polyno-
mial growth. However, if L is a sub-Laplacian on the three dimensional Heisenberg group,
then d = 4 but

C1(1 + |α|)3/2 ≤ ‖Liα‖L1→L1,∞ ≤ Cε(1 + |α|)3/2+ε.

See [16]. (See also [12]). The same estimates hold for a sub-Laplacian on SU(2) for which
d = 4 and D = 0 (see [7]). Thus there are situations where the upper bound is better than
the one given by Theorem 2 and where the lower-bound in Theorem 1 is false. For general
groups of polynomial growth Theorem 2 gives the best known estimates, however as the
above examples show, these bounds are not always best possible.
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