IMAGINARY POWERS OF LAPLACE OPERATORS

ADAM SIKORA AND JAMES WRIGHT

ABSTRACT. We show that if L is a second-order uniformly elliptic operator in divergence form on \mathbf{R}^d , then $C_1(1+|\alpha|)^{d/2} \leq \|L^{i\alpha}\|_{L^1 \to L^{1,\infty}} \leq C_2(1+|\alpha|)^{d/2}$. We also prove that the upper bounds remain true for any operator with the finite speed propagation property.

1. Introduction. Assume that $a_{ij} \in C^{\infty}(\mathbf{R}^d)$, $a_{ij} = a_{ji}$ for $1 \leq i, j \leq d$ and that $\kappa I \leq (a_{ij}) \leq \tau I$ for some positive constants κ and τ . We define a positive self-adjoint operator L on $L^2(\mathbf{R}^d)$ by the formula

(1)
$$L = -\sum \partial_i a_{ij} \partial_j$$

We refer readers to [8] for the precise definition and basic properties of L. In particular, L admits a spectral resolution E(t) and we can define the operator $L^{i\alpha}$ by the formula

$$L^{i\alpha} = \int_0^\infty t^{i\alpha} dE(t).$$

By spectral theory $||L^{i\alpha}||_{L^2 \to L^2} = 1$. It is well known that $L^{i\alpha}$ falls within the scope of classical Calderón-Zygmund theory (as described in [3] or [22]) and so it extends to a bounded operator on $L^p, 1 , and is also weak type (1,1). The main aim of this paper is to obtain the sharp estimate for the weak type (1,1) norm of <math>L^{i\alpha}$ in terms of α .

The study of imaginary powers of operators is an important part of the theory of operators of type ω with H^{∞} functional calculus, see e.g., [6], [9] and [17]. What is perhaps more interesting and relevant from the point of view of this paper is that the weak type (1, 1) norm of imaginary powers of self-adjoint operators can play a central role in the theory of spectral multipliers. See [5] and [15]. Imaginary powers of Laplace operators on compact Lie groups were also investigated in [20]. Theorem 2 below applied to Laplace operators on compact Lie groups gives the sharp endpoint result of Theorem 3 in [20], pp. 58. See also Corollary 4 of [20], pp. 121.

However, the starting point for this paper is the following observation from [2]. If we denote the weak type (1,1) norm of an operator T on a measure space (X, μ) by $||T||_{L^1 \to L^{1,\infty}} = \sup \lambda \ \mu(\{x \in X : |Tf(x)| > \lambda\})$ where the supremum is taken over $\lambda > 0$ and functions f with $L^1(X)$ norm less than one, then for the standard Laplace operator on \mathbf{R}^d ,

(2)
$$C_1(1+|\alpha|)^{d/2} \le \|(-\Delta_d)^{i\alpha}\|_{L^1 \to L^{1,\infty}} \le C_2(1+|\alpha|)^{d/2} \log(1+|\alpha|).$$

The classical Hörmander multiplier theorem (see [13]) states that a multiplier operator T_m on \mathbf{R}^d with multiplier *m* satisfies

(3)
$$||T_m||_{L^1 \to L^{1,\infty}} \leq C_s \sup_{t>0} ||\eta(\cdot)m(t\cdot)||_{H_s} \leq A$$

for any s > d/2 and any $\eta \in C_c^{\infty}(\mathbf{R}_+)$ not identically zero. Here H_s is the Sobolev space of order s on \mathbf{R}^d . Since the Sobolev norm in (3) behaves like $(1 + |\alpha|)^s$ for the multiplier

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B15; Secondary 35P99.

¹

 $m(x) = |x|^{i\alpha}$ of $(-\Delta)^{i\alpha}$, (2) shows that the exponent d/2 in Hörmander's theorem is sharp. Furthermore, if (3) is satisfied with $A < \infty$, then the distribution $K = \hat{m}$ agrees with a locally integrable function away from the origin which satisfies

(4)
$$I(B) = \sup_{y \neq 0} \int_{|x| \ge B|y|} |K(x-y) - K(x)| \, dx \le A$$

for $B \geq 2$ and Hörmander's theorem actually shows that the weak type (1,1) norm of T_m is bounded by $I(B) + ||m||_{L^{\infty}}^2 + B^d$. One can easily compute that for the convolution kernel K of $(-\Delta)^{i\alpha}$, the integral I(B) is bounded above and below by $(1 + |\alpha|)^{d/2} \log(1 + |\alpha|/B)$. Hence Hörmander's theorem gives the upper bound in (2). The lower bound is a simple consequence of the explicit formula for the kernel K of $(-\Delta)^{i\alpha}$. See for example, [21] pp. 51-52.

The main observation of this paper is to note that there is a slight improvement of the bound $I(B) + ||m||_{L^{\infty}}^2 + B^d$ to $I(B) + (||m||_{L^{\infty}}^2 B^d)^{1/2}$. This can be achieved either by using C. Fefferman's ideas in [11] of exploiting more information of L^2 bounds or by varying the level of the Calderón - Zygmund decomposition and optimising. Hence we will be able to remove the *log* term in (2). We will show that this more precise estimate holds for a general class of operators.

Theorem 1. Suppose that L is defined by (1). Then

(5)
$$C_1(1+|\alpha|)^{d/2} \le \|L^{i\alpha}\|_{L^1 \to L^{1,\infty}} \le C_2(1+|\alpha|)^{d/2}$$

for all $\alpha \in \mathbf{R}$.

Proof of the lower bound. We begin with some known estimates for the kernel $p_t(x, y)$ of the heat operator e^{-tL} associated to L. Firstly, this kernel satisfies Gaussian bounds

(6)
$$C_1 \frac{1}{t^{d/2}} e^{-b_1 \rho^2(x,y)/t} \le p_t(x,y) \le C_2 \frac{1}{t^{d/2}} e^{-b_2 \rho^2(x,y)/t}$$

(see [8]) for some positive constants C_1, C_2, b_1 and b_2 and where $\rho(x, y)$ denotes the geodesic distance between x and y given by the Riemannian metric $(a_{i,j})$. In this setting of uniform ellipticity, $\kappa |x - y| \leq \rho(x, y) \leq \tau |x - y|$. Secondly, from the construction of a parametrix for the heat equation with respect to L (either via Hadamard's construction, see §17.4 of [14], or using pseudodifferential operator techniques, see chapter 7, §13 of [23]), we have for each $y \in \mathbf{R}^d$, a ball B(y, r) such that for $x \in B(y, r)$ and 0 < t < 1,

(7)
$$|p_t(x,y) - (\det a_{ij}(y))^{-1/2} (4\pi t)^{-d/2} e^{-\rho^2(x,y)/4t}| \le C t^{1/2} t^{-d/2}.$$

Here we are using the fact that p_t is symmetric, $p_t(x, y) = p_t(y, x)$. From (6) and (7), we have for $x \in B(y, r)$ the bound

$$|p_t(x,y) - (\det a_{ij}(y))^{-1/2} (4\pi t)^{-d/2} e^{-\rho^2(x,y)/4t}| \le C t^{1/4} t^{-d/2} \exp\left(-b' \rho(x,y)^2/t\right)$$

which translates into a bound for the kernel $K_{L^{i\alpha}}$ of $L^{i\alpha}$ since the functional calculus for L gives us the relationship

$$L^{i\alpha} = \Gamma(-i\alpha)^{-1} \int_0^\infty t^{-i\alpha-1} e^{-tL} dt$$

for $\alpha \neq 0$. Thus for $x \in B(y, r)$,

(8)
$$|K_{L^{i\alpha}}(x,y) - (\det a_{ij}(y))^{-1/2} 4^{i\alpha} \pi^{-d/2} \gamma(\alpha) \rho(x,y)^{-d-i2\alpha}| \le C |\Gamma(-i\alpha)|^{-1} \rho(x,y)^{-d+1/2}$$

where
$$\gamma(\alpha) = \Gamma(i\alpha + d/2)/\Gamma(-i\alpha)$$
. Using (8) with $y = 0$ we obtain for λ large enough $\mu(\{|K_{L^{i\alpha}}(x,0)| \ge \lambda\}) \ge \mu(\{C_1|\gamma(\alpha)|\rho^{-d}(x,0) \ge 2\lambda\}) - \mu(\{C_2|\Gamma(-i\alpha)|\rho^{-d+\frac{1}{2}}(x,0) \ge \lambda\})$
 $= \mu(B(0,(2C_1|\gamma(\alpha)|/\lambda)^{1/d})) - \mu(B(0,(C_2|\Gamma(-i\alpha)|/\lambda)^{1/(d-1/2)})) \ge C'|\gamma(\alpha)|/\lambda.$

Here μ is Lebesgue measure and the sets above have the further restriction that $x \in B(0,r)$. Since $K_{L^{i\alpha}}$ is smooth away from the diagonal, we see that $L^{i\alpha}\phi_{\delta}(x)$ tends to $K_{L^{i\alpha}}(x,0)$ as $\delta \to 0$ for any $x \neq 0$ and any approximation of the identity $\{\phi_{\delta}\}$. Hence the above estimate shows that the weak type (1,1) norm of $L^{i\alpha}$ is bounded below by $|\gamma(\alpha)| = |\Gamma(i\alpha + d/2)/\Gamma(-i\alpha)| \sim (1 + |\alpha|)^{\frac{d}{2}}$ (see [10]).

The upper bound in Theorem 1 holds in a much more general setting which we describe now. Assume that (X, μ, ρ) is a space with measure μ and metric ρ . If $||P||_{L^2 \to L^\infty} < \infty$ then we can define the kernel K_P of the operator P by the formula

$$\langle P(\psi), \phi \rangle = \int P(\psi) \overline{\phi} d\mu = \int K_P(x, y) \psi(x) \overline{\phi(y)} d\mu(x) d\mu(y).$$

Note that $\sup_x ||K_P(x, \cdot)||_{L^2} = ||P||_{L^2 \to L^\infty}$. Next, we say that

(9)
$$\operatorname{supp} K_P \subset \{(x, y) \in X^2 : \rho(x, y) \le r\}$$

if $\langle P(\psi), \phi \rangle = 0$ for every $\phi, \psi \in L^2$ and every $r_1 + r_2 + r < \rho(x', y')$ such that $\psi(x) = 0$ for $\rho(x, x') > r_1$ and $\phi(x) = 0$ for $\rho(x, y') > r_2$. This definition (9) makes sense even if $\|P\|_{L^2 \to L^\infty} = \infty$. Now if L is a self-adjoint positive definite operator acting on $L^2(\mu)$ then we say that it satisfies the finite speed propagation property of the corresponding wave equation if

(10)
$$\operatorname{supp} K_{C_t(\sqrt{L})} \subset \{(x, y) \in X^2 : \rho(x, y) \le t\},\$$

where $C_t(\sqrt{L}) = \int \cos(t\sqrt{\lambda}) dE(\lambda)$.

Theorem 2. Suppose that L satisfies (10). Next assume that

(11) $\|\exp(-tL)\|_{L^2 \to L^{\infty}}^2 \leq C_1 V_{d,D}(t^{1/2})^{-1} \leq C \mu(B(x,t^{1/2}))^{-1} \leq C_2 V_{d,D}(t^{1/2})^{-1}$ for all t > 0 and $x \in X$, where B(x,t) is a ball with radius t centred at x and

$$V_{d,D}(t) = \begin{cases} t^d & \text{for } t \leq 1\\ t^D & \text{for } t > 1 \end{cases}$$

for $d, D \geq 0$. Then

$$||L^{i\alpha}||_{L^1 \to L^{1,\infty}} \le C_2 (1+|\alpha|)^{\max(d,D)/2}$$

for all $\alpha \in \mathbf{R}$.

We remark that (10) and (11) are equivalent to having Gaussian upper bounds on the heat kernel and the associated volume growth on balls. See [18]. Furthermore, the upper bound in Theorem 1 follows from Theorem 2. Indeed, if $X = \mathbf{R}^d$, $\rho(x, y) = \tau |x - y|$ and μ is Lebesgue measure then it is well known (see e.g. [8] and [19]) that (11) and (10) hold. We are going to prove Theorem 2 only in the case d = D. The argument for the other cases is similar.

2. Preliminaries. The following lemma is a very simple but useful consequence of (10).

Lemma 1. Assume that L satisfies (10) and that \hat{F} is a Fourier transform of an even bounded Borel function F with supp $\hat{F} \subset [-r, r]$. Then

$$\operatorname{supp} K_{F(\sqrt{L})} \subset \{(x, y) \in X^2 : \rho(x, y) \le r\}.$$

Proof. If F is an even function, then by the Fourier inversion formula,

$$F(\sqrt{L}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{F}(t) C_t(\sqrt{L}) dt.$$

But since supp $\hat{F} \subset [-r, r]$,

$$F(\sqrt{L}) = \frac{1}{2\pi} \int_{-r}^{r} \hat{F}(t) C_t(\sqrt{L}) dt$$

and Lemma 1 follows from (10).

Lemma 2. Let $\phi \in C_c^{\infty}(\mathbf{R})$ be even, $\phi \geq 0$, $\|\phi\|_{L^1} = 1$, $\operatorname{supp}(\phi) \subset [-1, 1]$, and set $\phi_r(x) = 1/r \phi(x/r)$ for r > 0. Let Φ denote the Fourier transform of ϕ and Φ^r denote the Fourier transform of ϕ_r . If (11) and (10) hold, then the kernel $K_{\Phi^r(\sqrt{L})}$ of the self-adjoint operator $\Phi^r(\sqrt{L})$ satisfies

(12)
$$\operatorname{supp} K_{\Phi^r(\sqrt{L})} \subset \{(x,y) \in X^2; \rho(x,y) \le r\}$$

and

(13)
$$|K_{\Phi^r(\sqrt{L})}(x,y)| \le C r^{-d}$$

for all r > 0 and $x, y \in X$.

Proof. (12) follows from Lemma 1. For any $m \in \mathbf{N}$ and r > 0, we have the relationship

$$(I+rL)^{-m} = \frac{1}{m!} \int_{0}^{\infty} e^{-rtL} e^{-t} t^{m-1} dt$$

and so when m > d/4, (11) implies

(14)
$$\|(I+rL)^{-m}\|_{L^2\to L^\infty} \leq \frac{1}{m!} \int_0^\infty \|\exp(-rtL)\|_{L^2\to L^\infty} e^{-t} t^{m-1} dt \leq C_1 r^{-d/4}$$

for all r > 0. Now $\|(I + r^2 L)^{-m}\|_{L^1 \to L^2} = \|(I + r^2 L)^{-m}\|_{L^2 \to L^{\infty}}$ and so

$$\|\Phi^{r}(\sqrt{L})\|_{L^{1}\to L^{\infty}} \leq \|(I+r^{2}L)^{2m}\Phi^{r}(\sqrt{L})\|_{L^{2}\to L^{2}}\|(I+r^{2}L)^{-m}\|_{L^{2}\to L^{\infty}}^{2}$$

The L^2 operator norm of the first term is equal to the L^{∞} norm of the function $(1+r^2|t|)^{2m}\Phi(r\sqrt{|t|})$ which is uniformly bounded in r > 0 and so (13) follows by (14).

Next we recall the Calderón-Zygmund decomposition in the general setting of spaces of homogeneous type (see e.g. [3] or [22]).

Lemma 3. There exists C such that, given $f \in L^1(X, \mu)$ and $\lambda > 0$, one can decompose f as

$$f = g + b = g + \sum b_i$$

so that

- (1) $|g(x)| \leq C\lambda$, a.e. x and $||g||_{L^1} \leq C||f||_{L^1}$.
- (2) There exists a sequence of balls $B_i = B(x_i, r_i)$ such that the support of each b_i is contained in B_i and

$$\int |b_i(x)| d\mu(x) \leq C\lambda \mu(B_i).$$

(3)
$$\sum \mu(B_i) \leq C \frac{1}{\lambda} \int |f(x)| d\mu(x).$$

(4) There exists $k \in \mathbf{N}$ such that each point of X is contained in at most k of the balls $B(x_i, 2r_i)$.

We are now in a position to prove Theorem 2.

3. Proof of Theorem 2. The proof follows closely the line of argument in [1] (which of course generalises to this setting). We are out to prove

$$\lambda \,\mu(\{x \in X \, : \, |L^{i\alpha}f(x)| \ge \lambda \,\}) \, \le \, C(1+|\alpha|)^{\frac{a}{2}} \, \|f\|_{L^{1}}.$$

As usual we start by decomposing f into $g + \sum b_i$ at the level of λ according to Lemma 3. We will follow the idea of C. Fefferman [11] of using more information of the L^2 operator norm (in our case, $\|L^{i\alpha}\|_{L^2 \to L^2} = 1$) by smoothing out the bad functions b_i at a scale smaller than the size of it's support and considering this part of the good function where L^2 estimates can be used (see also [4]). In our case for each b_i , consider $\Phi^{s_i}(\sqrt{L})b_i$ where $s_i = \theta r_i, \ \theta = (1 + |\alpha|)^{-\frac{1}{2}}$, and let $G = g + \sum \Phi^{s_i}(\sqrt{L})b_i$ be the modified good function. Hence f = G + B where $B = \sum (I - \Phi^{s_i}(\sqrt{L})b_i$ and we write

(15)
$$\lambda \mu(\{|L^{i\alpha}f(x)| \ge \lambda\}) \le \lambda \mu(\{|L^{i\alpha}G(x)| \ge \lambda/2\}) + \lambda \mu(\{|L^{i\alpha}B(x)| \ge \lambda/2\}).$$

The first term is less than $4/\lambda \|L^{i\alpha}G\|_{L^2}^2 \le 4/\lambda \|G\|_{L^2}^2$. However, according to Lemma 2,

$$|\Phi^{s_i}(\sqrt{L})b_i(x)| \leq \int |K_{\Phi^{s_i}(\sqrt{L})}(x,y)b_i(y)| d\mu(y) \leq C (\theta r_i)^{-d} ||b_i||_{L^1} \mathbb{1}_{B(x_i,2r_i)}$$

and therefore by Lemma 3, $|G(x)| \leq C\theta^{-d}\lambda$ for *a.e.*, *x*. Using Lemma 2 again which shows that the $L^p \to L^p$ operator norms of $\Phi^r(\sqrt{L})$ are uniformily bounded in r > 0, we also have that $\|G\|_{L^1} \leq \|g\|_{L^1} + C \sum \|\Phi^{s_i}(\sqrt{L})b_i\|_{L^1} \leq \|g\|_{L^1} + C \sum \|b_i\|_{L^1} \leq C \|f\|_{L^1}$. Therefore the first term in (15) is bounded by $(1 + |\alpha|)^{\frac{d}{2}} \|f\|_{L^1}$.

Since $\mu(\cup B(x_i, \theta^{-1}r_i)) \leq C\theta^{-d} \sum \mu(B_i) \leq C(1+|\alpha|)^{\frac{d}{2}} ||f||_{L^1}/\lambda$, then to bound the second term in (15), it suffices to show

(16)
$$\int_{\substack{x \notin \cup B_i^*}} |L^{i\alpha}B(x)| \, d\mu(x) \leq C(1+|\alpha|)^{\frac{d}{2}} ||f||_{L^1}$$

where $B_i^* = B(x_i, \theta^{-1}r_i)$. Let $H^{\alpha}(t) = |t|^{2i\alpha}$ so that $L^{i\alpha}B(x) = \sum H^{\alpha}(1 - \Phi^{s_i})(\sqrt{L})b_i(x)$ and therefore the left side of (16) is less than

$$\sum_{i} \int_{x \notin \cup_{j} B_{j}^{*}} \left| \int K_{H^{\alpha}(1-\Phi^{s_{i}})(\sqrt{L})}(x,y) b_{i}(y) \, d\mu(y) \right| d\mu(x)$$

$$\leq \sum_{i} \int |b_{i}(y)| \int_{x \notin B_{i}^{*}} |K_{H^{\alpha}(1-\Phi^{s_{i}})(\sqrt{L})}(x,y)| \, d\mu(x) \, d\mu(y).$$

Since $F(L)^* = \overline{F}(L)$, we may interchange the roles of x and y, and so (16) will follow from Lemma 3 once we establish

(17)
$$\sup_{\substack{x,i\\\rho(x,y)\geq\theta^{-1}r_i}} \int_{|K_{H^{\alpha}(1-\Phi^{s_i})(\sqrt{L})}(x,y)| d\mu(y) \leq C (1+|\alpha|)^{\frac{d}{2}}.$$

We now fix $x \in X$ and *i*. Let $\eta \in C_c^{\infty}(\mathbf{R})$ be an even function supported in $\{t \in \mathbf{R} : 1 \leq |t| \leq 4\}$ such that

$$\sum_{n=-\infty}^{\infty} \eta(2^{-n}t) = 1 \text{ for all } t \neq 0.$$

We put $H_n^{\alpha}(t) = \eta(2^{-n}t)H^{\alpha}(t)$ so that

$$H^{\alpha}(1 - \Phi^{s_i})(\sqrt{L}) = \sum_n H^{\alpha}_n(1 - \Phi^{s_i})(\sqrt{L})$$

Thus

(18)
$$\int_{y \notin B_i^*} |K_{H^{\alpha}(1-\Phi^{s_i})(\sqrt{L})}(x,y)| \, d\mu(y) \leq \sum_{\substack{n \ y \notin B_i^*}} \int_{y \notin B_i^*} |K_{H_n^{\alpha}(1-\Phi^{s_i})(\sqrt{L})}(x,y)| \, d\mu(y)$$

and we will estimate each term in the sum on the right side in terms of n and i, uniformly in $x \in X$.

Let $k_o = [d/2] + 1$ so that

$$\int_{\substack{y \notin B_i^*}} (1 + 2^n \rho(x, y))^{-2k_o} d\mu(y) \le C \int_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{-2k_0} r^{d-1} dr \le C 2^{-2nk_o} (\theta^{-1} r_i)^{d-2k_o} d\mu(y) \le C \int_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{-2k_0} r^{d-1} dr \le C 2^{-2nk_o} (\theta^{-1} r_i)^{d-2k_o} d\mu(y) \le C \int_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{-2k_0} r^{d-1} dr \le C 2^{-2nk_o} (\theta^{-1} r_i)^{d-2k_o} d\mu(y) \le C \int_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{-2k_0} r^{d-1} dr \le C 2^{-2nk_o} (\theta^{-1} r_i)^{d-2k_o} d\mu(y) \le C \int_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{-2k_0} r^{d-1} dr \le C 2^{-2nk_o} (\theta^{-1} r_i)^{d-2k_o} d\mu(y) \le C \int_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{-2k_0} r^{d-1} dr \le C 2^{-2nk_o} (\theta^{-1} r_i)^{d-2k_o} d\mu(y) \le C \int_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{-2k_0} r^{d-1} dr \le C 2^{-2nk_o} (\theta^{-1} r_i)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{-2k_0} r^{d-1} dr \le C 2^{-2nk_o} (\theta^{-1} r_i)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{-2k_0} r^{d-1} dr \le C 2^{-2nk_o} (\theta^{-1} r_i)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{-2k_0} r^{d-1} dr \le C 2^{-2nk_o} (\theta^{-1} r_i)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y) \le C \sum_{\theta^{-1} r_i}^\infty (1 + 2^n r)^{d-2k_o} d\mu(y)$$

and therefore by the Cauchy-Schwarz inequality,

(19)
$$\int_{y\notin B_{i}^{*}} |K_{H_{n}^{\alpha}(1-\Phi^{s_{i}})(\sqrt{L})}(x,y)| d\mu(y)$$

$$\leq C 2^{-nk_{o}} (\theta^{-1}r_{i})^{\frac{d}{2}-k_{o}} \Big(\int_{\rho(x,y)\geq\theta^{-1}r_{i}} |K_{H_{n}^{\alpha}(1-\Phi^{s_{i}})(\sqrt{L})}(x,y)|^{2} (1+2^{n}\rho(x,y))^{2k_{o}} d\mu(y)\Big)^{1/2}.$$

We break up the integral on the right side of (19) where $2^n \rho(x, y)$ is roughly constant and consider

(20)
$$\sum_{2^{j} \ge 2^{n} r_{i} \theta^{-1}} 2^{2jk_{o}} \int_{2^{j-1-n} < \rho(x,y) \le 2^{j-n}} |K_{H_{n}^{\alpha}(1-\Phi^{s_{i}})(\sqrt{L})}(x,y)|^{2} d\mu(y).$$

Fix a nonnegative even $\varphi \in C_c^{\infty}(\mathbf{R})$ such that $\varphi = 1$ on [-1/4, 1/4] and $\varphi = 0$ on $\mathbf{R} \setminus [-1/2, 1/2]$. Then the Fourier transforms of $H_n^{\alpha}(1 - \Phi^{s_i})$ and $H_n^{\alpha}(1 - \Phi^{s_i}) * (\delta - \hat{\varphi}_{2^{n-j}})$ agree on $\{\xi : |\xi| \ge 2^{j-1-n}\}$ and so by Lemma 1, the kernels of $H_n^{\alpha}(1 - \Phi^{s_i})(\sqrt{L})$ and $H_n^{\alpha}(1 - \Phi^{s_i}) * (\delta - \hat{\varphi}_{2^{n-j}})(\sqrt{L})$ agree on the set $\{(x, y) \in X^2 : \rho(x, y) \ge 2^{j-1-n}\}$. Here δ denotes the Dirac mass at 0. For each j, the integrals in (20) satisfy the bound

$$\int_{2^{j-1-n} < \rho(x,y) \le 2^{j-n}} |K_{H_n^{\alpha}(1-\Phi^{s_i})(\sqrt{L})}(x,y)|^2 d\mu(y) \le ||K_{F_{n,j}^{\alpha}(\sqrt{L})}||_{L^2 \to L^{\infty}}^2$$

where we are defining $F_{n,j}^{\alpha}(t) = H_n^{\alpha}(1 - \Phi^{s_i}) * (\delta - \hat{\varphi}_{2^{n-j}})(t)$. So by (14), the right side of this inequality is bounded by $\|(I + 2^{-2n}L)^m F_{n,j}^{\alpha}(\sqrt{L})\|_{L^2 \to L^2}^2 2^{nd}$ as long as m > d/4. Everything then comes down to estimating the L^{∞} norm of $(1 + 2^{-2n}t^2)^m F_{n,j}^{\alpha}(t)$. We make the following claim.

Claim: For each j, n and m > d/4,

$$(1+2^{-2n}t^2)^m |F_{n,j}^{\alpha}(t)| \leq C_m |\alpha|^{k_o} 2^{-jk_o} \min(1, (2^n r_i \theta)^2) \min(1, |\alpha| 2^{-j})$$
 uniformly in $t \in \mathbf{R}$.

6

The claim shows that

$$\|K_{F_{n,j}^{\alpha}}(\sqrt{L})\|_{L^{2}\to L^{\infty}} \leq C \,|\alpha|^{k_{o}} 2^{-jk_{o}} 2^{\frac{nd}{2}} \min(1, (2^{n}r_{i}\theta)^{2}) \min(1, |\alpha| 2^{-j})$$

and hence the sum in (20) is bounded by

$$|\alpha|^{2k_o} 2^{nd} \min^2(1, (2^n r_i \theta)^2) \sum_{2^j \ge 2^n r_i \theta^{-1}} \min^2(1, |\alpha|^{2^{-j}}) \le |\alpha|^{2k_o} 2^{nd} \min^2(1, (2^n r_i \theta)^2) \log(2 + \frac{|\alpha|}{2^n r_i \theta^{-1}}).$$

Recall that θ and α are related so that $\theta |\alpha| = |\alpha|/(1+|\alpha|)^{\frac{1}{2}} \le \theta^{-1}$. Plugging this into (19) gives

$$\int_{\substack{y \notin B_i^*}} |K_{H_n^{\alpha}(1-\Phi^{s_i})(\sqrt{L})}(x,y)d\mu(y)| \le \theta^{-d}(2^n r_i\theta)^{\frac{d}{2}-k_o} \min(1,(2^n r_i\theta)^2)\log(2+\frac{1}{2^n r_i\theta})$$

and this makes the sum in (18) bounded by $\theta^{-d} = (1 + |\alpha|)^{\frac{d}{2}}$, proving (17) and hence Theorem 2.

Proof of the Claim. If $G_n(t) = H_n^{\alpha}(t)(1 - \Phi^{s_i}(t))$, then $F_{n,j}^{\alpha}(t) = 2^{(n-j)k_o}G_n^{(k_o)} * \hat{\psi}_{2^{n-j}}(t)$ where $\psi(\xi) = \xi^{-k_o}(1 - \varphi(\xi))$ (and so $\hat{\psi}$ is continuous, rapidly decreasing and has vanishing moments, $\int t^{\ell} \hat{\psi}(t) dt = 0, \ \ell = 0, 1, 2, \dots$). Hence

$$\begin{split} F_{n,j}^{\alpha}(t) &= 2^{(n-j)k_o} \int\limits_{\mathbf{R}} \left[G_n^{(k_o)}(t-s) - G_n^{(k_o)}(t) \right] \hat{\psi}_{2^{n-j}}(s) \, ds \\ &= 2^{(n-j)k_o} \int\limits_{\mathbf{R}} \left[G_n^{(k_o)}(t-2^{n-j}s) - G_n^{(k_o)}(t) \right] \hat{\psi}(s) \, ds. \end{split}$$

However $G_n(t) = \eta(2^{-n}t)|t|^{2i\alpha}(1 - \Phi(s_it))$ and thereby each time we take a derivative, we gain a factor of 2^{-n} . $G_n^{(k_o)}(t)$ is thus a finite sum of terms of the form $\alpha^p 2^{-nk_o} \tilde{\eta}(2^{-n}t)|t|^{2i\alpha} \Psi(s_it)$ where $\tilde{\eta} \in C_c^{\infty}(\mathbf{R})$, $\operatorname{supp}(\tilde{\eta}) \subset \operatorname{supp}(\eta)$ and Ψ is a Schwartz function which is $0(t^2)$ as $t \to 0$ (note that $\Phi'(0) = \int x\phi(x)dx = 0$ since ϕ is even). The worst power p is k_o which occurs when all derivatives land on the factor $|t|^{2i\alpha}$.

Without loss of generality, let us suppose that $G^{(k_o)}(t) = \alpha^{k_o} 2^{-nk_o} \eta(2^{-n}t) |t|^{2i\alpha} \Psi(s_i t)$. From the above integral representation of $F^{\alpha}_{n,j}(t)$, we see that the main contribution to $(1+2^{-2n}t^2)^m |F^{\alpha}_{n,j}(t)|$ occurs when $|t| \sim 2^n$ and in this case,

$$|F_{n,j}^{\alpha}(t)| \le C|\alpha|^{k_o} 2^{(n-j)k_o} 2^{-nk_o} \min(1, (s_i 2^n)^2) \le C|\alpha|^{k_o} 2^{-jk_o} \min(1, (2^n r_i \theta)^2).$$

However we may write

$$F_{n,j}^{\alpha}(t) = -2^{(n-j)k_o} 2^{n-j} \int_{0}^{1} \int_{\mathbf{R}} G_n^{(k_o+1)}(t - \sigma 2^{j-n}s) s\hat{\psi}(s) \, ds \, d\sigma$$

and therefore we also have

 $|F_{n,j}^{\alpha}(t)| \leq C|\alpha|^{k_o+1} 2^{(n-j)k_o} 2^{n-j} 2^{-n(k_o+1)} \min(1, (s_i 2^n)^2) \leq C|\alpha|^{k_o} 2^{-jk_o} |\alpha| 2^{-j} \min(1, (2^n r_i \theta)^2),$ establishing the claim.

Remarks. Theorem 1 holds also for Laplace-Beltrami operators on compact manifolds of dimension d. The proof is essentially the same as the proof of Theorem 1.

The hypotheses of Theorem 2 are satisfied for Laplace operators on Lie groups of polynomial growth. However, if L is a sub-Laplacian on the three dimensional Heisenberg group, then d = 4 but

$$C_1(1+|\alpha|)^{3/2} \le \|L^{i\alpha}\|_{L^1 \to L^{1,\infty}} \le C_\epsilon (1+|\alpha|)^{3/2+\epsilon}.$$

See [16]. (See also [12]). The same estimates hold for a sub-Laplacian on SU(2) for which d = 4 and D = 0 (see [7]). Thus there are situations where the upper bound is better than the one given by Theorem 2 and where the lower-bound in Theorem 1 is false. For general groups of polynomial growth Theorem 2 gives the best known estimates, however as the above examples show, these bounds are not always best possible.

References

- G. Alexopoulos, Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math. Soc. (3) 120 (1994), 973-979.
- M. Christ, L^p bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. (1) 328 (1991), 73-81.
- [3] M. Christ, *Lectures on singular integral operators*, CBMS Regional Conference Series in Mathematics, 77, Amer. Math. Soc. Providence (1990).
- [4] M. Christ, E.M. Stein, A remark on singular Calderón Zygmund theory, Proc. Amer. Math. Soc. (3) 99 (1987), 71-75.
- [5] M. Cowling, S. Meda, Harmonic analysis and ultracontractivity, Trans. Amer. Math. Soc. (2) 340 (1993), 733–752.
- [6] M. Cowling, I. Doust, A. McIntosh, A. Yagi, Banach space operators with bounded H[∞] functional calculus, J. Austral. Math. Soc. (Series A) 60 (1996), 51-89.
- [7] M. Cowling, A. Sikora, Spectral multipliers for a sub-Laplacian on SU(2), in preparation.
- [8] E.B. Davies, *Heat kernels and spectral theory*, Cambridge Univ. Press (1989).
- [9] G. Dore, A. Venni, On the closedness of the sum of two closed operators, Math. Z. (2) 196 (1987), 189–201.
- [10] A. Erdlyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, *Higher transcendental functions*. Vol. I. Mc Graw-Hill (1953).
- [11] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36.
- [12] W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Colloq. Math. 65 (1993), 231–239.
- [13] L. Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), 93-139.
- [14] L. Hörmander, The analysis of linear partial differential operators III, Springer-Verlag (1983).
- [15] S. Meda, A general multiplier theorem, Proc. Amer. Math. Soc. (3) 110 (1990), 639–647.
- [16] D. Müller, E.M. Stein, On spectral multipliers for Heisenberg and related groups, J.Math. Pures Appl. 73 (1994), 413–440.
- [17] J. Prüss, H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. (3) 203 (1990), 429–452.
- [18] A. Sikora, Sharp pointwise estimates on heat kernels, Quart. J. Math. Oxford (2) 47 (1996), 371-382.
- [19] A. Sikora, On-diagonal estimates on Schrödinger semigroup kernels and reduced heat kernels, Comm. Math. Phys. 188 (1997), 233–249.
- [20] E.M. Stein, Topics in harmonic analysis, Princeton University Press (1970).
- [21] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press (1970).
- [22] E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, (1993).
- [23] M. Taylor, Partial differential equations, II, Springer-Verlag, New York (1996).

Adam Sikora, Centre for Mathematics and its Applications, School of Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia (or University of Wrocław, KBN 2 P03A 058 14)

E-mail address: sikora@maths.anu.edu.au

JAMES WRIGHT, SCHOOL OF MATHEMATICS, UNIVERSITY OF NEW SOUTH WALES, SYDNEY, NSW 2052, AUSTRALIA

E-mail address: jimw@maths.unsw.edu.au