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What is Semiclassical Analysis?

Term for a collection of techniques the evolved from the Fourier
Transform method for solving PDE and specially adapted to deal
elegantly with a parameter.
Fourier Transform Method Suppose that for α = (α1, . . . , αn)
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So we can solve an algebraic equation on the Fourier side then
invert to solve the differential equation L[u] = 0.



What Kind of Problems

Semiclassical analysis is well suited to studying solutions to PDEs
that involve a parameter.
Canonical examples are Laplacian eigenfunctions

−∆u = λ2u

What happens as λ→∞.

How does u behave, can it be concentrated in any region?

What is the behaviour of u near local features such as lower
dimensional sets?

How to products of different eigenfunctions behave?

What is the connections between dynamics and geometry and
the growth properties of eigenfunctions?



Measuring Concentration

Understanding how the Lp norm of u grows helps us to understand
the local features of a solution.(∫

|u(x)|pdx
)1/p

≤ ?

Point

High L∞ norm

Sharp change in Lp norm
when p <∞

Tube

Lower L∞ norm

Change in Lp norm more
gentle



Submanifold Estimates

Can take cross sections of
eigenfunctions and study
their Lp norm

Because cross sections are
lower dimensional we expect
growth for Lp, p close to 2.



Bilinear estimates

Suppose
−∆u = λ2u −∆v = µ2v

How does ||uv ||Lp behave?

Applications to nonlinear PDE

i∂tv(t, x)+∆v(t, x) = ±|v(t, x)|αv(t, x)

Interaction between frequency bands
determines regularity properties.



Laplacian Eigenfunctions

Want to solve
(−∆− λ2)u = 0

so on the Fourier side we solve

(|ξ|2 − λ2)û = 0

That is û is supported on |ξ| = λ. Semiclassical analysis builds the
parameter into the operator. Let h = λ−1 and introduce

Fh[u] =
1

(2πh)n/2

∫
e−

i
h
〈x .ξ〉u(y)dy

we call this the semiclassical Fourier transform. Think of it as a
rescaling

|ξ| = λ = h−1 ⇒ |ξ| = 1



Properties of Fh

Retain many of the standard Fourier transform properties

ξi → hDxi∑
α

cαξ
α →

∑
α

cαh
|α|Dα

The prefactor (2πh)−n/2 is chosen so that this Fourier transform is
still an isometry of L2

||Fh[u]||L2 = ||u||L2

With this scaling Laplacian eigenfunctions obey

(|ξ|2 − 1)Fh[u] = 0



Semiclassical Psedodifferential Calculus

Can go step further and generalise to allow us to deal with
non-constant coefficient equations. Let p(x , ξ) ∈ C∞(Rn × Rn).
Define

p(x , hD)u =
1

(2πh)n

∫
e

i
h
〈x−y ,ξ〉p(x , ξ)u(y)dydξ

and call p(x , hD) the left (or standard) quantisation of the symbol
p(x , ξ). If p(x , ξ) = p(ξ) is independent of x then

p(x , hD) = p(hD) = F−1h p(ξ)Fh

so if p(x , ξ) = |ξ|2 − 1 then p(x , hD) = −h2∆− 1.



Why Quantisation?

Deep links to the theory of quantum mechanics.

Quantum Mechanics

Dynamics described by
Schrödinger equation

~
i

∂

∂t
Ψ(t, x) = ĤΨ(t, x)

||Ψ||L2 interpreted probabilistically

Classical Mechanics

Dynamics described by phase
space flow.

ẋ(t) = ∇ξH(x , ξ)

ξ̇(t) = −∇xH(x , ξ)



Classical Dynamics

Suppose H(x , ξ) is the Hamiltonian of a system (that is it defines
the energy). The classical flow associated with H(x , ξ) is{

ẋ(t) = ∂ξH(x , ξ)

ξ̇(t) = −∂xH(x , ξ)

Measurable quantities are called observables. They are given by a
symbol q(x , ξ) which evolves under the equation

q̇(x , ξ) = {q(x , ξ),H(x , ξ)} =
∑
j

∂H

∂ξj

∂q

∂xj
− ∂H

∂xj

∂q

∂ξj

Note that H(x , ξ) is constant in time (that is energy is conserved).



Quantum Analogues

If H(x , ξ) is the classical energy then the operator H(x , hD) is the
quantum energy operator. So if

H(x , hD)u = u

we are saying that u is in some fixed energy state.
Key Link

[p(x , hD), q(x , hD)] = h{p, q}(x , hD) + O(h2)

That is the principal symbol of a commutator (quantum
mechanics) is given by the Poisson bracket (classical mechanics).



Advantages of Semiclassical Analysis

Can develop a calculus of operators of the p(x , hD) including
composition formulae and conditions for invertibility.

By incorporating the parameter in the operator can efficiently
treat cases at multiple scales.

Relationship to quantum mechanics gives us a useful intuition.
The correspondence principle states that for high energy
systems classical and quantum mechanics must give the same
result for any measurement.

The semiclassical calculus is very flexible, can just as well
consider approximate eigenfunctions (where p(x , hD)u is
small).



Phase Portraits

Think of u as having a ”fuzzy” phase space picture

Semiclassical
psuedodifferential
operators act by
multiplication on the
phase space portrait.

Allow for one further generalisation. Instead of just acting by
multiplcation on the phase space portrait what if we for instance
wanted to change variables.



Semiclassical Fourier Integral Operators

We can locally write a semiclassical Fourier integral operator, FIO

Tu =
1

(2πh)n

∫
e

i
h
φ(x ,y ,ξ)b(x , y , ξ)u(y)

The phase function φ(x , y , ξ) defines the behaviour of the
operator. Note that if

φ(x , y , ξ) = 〈x − y , ξ〉

then we have a semiclassical psuedodifferential operator. If

φ(x , y , ξ) = 〈x , η〉+ 〈x − y , ξ〉

The operator represents a change of variables of the Fourier side
ξ → ξ − η.



Applications of Semiclassical FIOs

Semiclassical FIOs are a large class of operators. Will focus on two
different techniques commonly used in the field

1 Using evolution equations to reconstruct eigenfunctions.

In this case the relevant FIO will be the propagator e
i
h p(x,hD)

Develop a small time parametrix representation

2 “Changing variables on phase space”

In this case we use a FIO to quantise a change of variables
turns p(x , ξ) into for instance ξ1.
Then we only have to deal with the simple operator hDx1



Evolutions equations and eigenfunctions

In our first PDE class we learn to separate solutions, look for

v(t, x) = f (t)u(x)

so
(hDt − h2∆)v(t, x) = 0

In this case have a solution

v(t, x) = e
i
h
tu(x)

where
−∆u = h−2u

We go the other way. Use evolution equations to solve for
eigenfunctions.



Duhamel method for describing eigenfunctions

Suppose
||p(x , hD)u||L2 ≤ Ch ||u||L2

we say u is an OL2(h) quasimode of p(x , hD). Then clearly

(hDt + p(x , hD))u = hf (x)

where ||f ||L2 ≤ C . Consider hf (x) as an inhomogeneity, Duhamel’s
principle givens us

u = U(t)u +
1

h

∫ t

0
U(t − s)[hf (x)]ds

Therefore estimating the Lp norms of the function u is the same as
analysing the L2 → Lp mapping properties of U(t).



A parametrix for U(t)

We can write U(t) as a semiclassical FIO and produce an explicit
local representation of it as an oscillatory integral operator.
We use the PDE {

(hDt + p(x , hD))U(t) = 0

U(0) = Id

to produce a parametrix solution

U(t)u =
1

(2πh)n

∫
e

i
h
φ(t,x ,y ,ξ)b(x , y , ξ)u(y)

∂tφ(t, x , y , ξ) = p(x ,∇xφ) φ(0, x , y , ξ) = 〈x − y , ξ〉



Some results

Theorem (Koch-Tataru-Zworkski, 2005)

Suppose u is an OL2(h) quasimode of a Laplace-like semiclassical
pseudodifferential operator p(x , hD), then

||u||Lp(M) . h−δ(n,p) ||u||L2

δ(n, p) =

{
n−1
2 −

n
p

2(n+1)
n−1 ≤ p ≤ ∞

n−1
4 −

n−1
2p 2 ≤ p ≤ 2(n+1)

n−1

The Laplace-like condition is necessary to obtain the correct
dispersive estimates.

There are sharp examples for all p.



Theorem (T, 2010)

Suppose u is an OL2(h) quasimode of a Laplace-like semiclassical
pseudodifferential operator p(x , hD) and H is a smooth embedded
hypersurface, then

||u||Lp(H) . h−δ̃(n,p) ||u||L2

δ̃(n, p) =

{
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2 −
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p

2n
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Theorem (Hassell-T, 2011)

If in addition the trajectories of classical flow given by p(x , ξ) only
glance H then

||u||L2(H) . h
−
(

n−1
3
− 2n−3

3p

)
2 ≤ p ≤ 2n

n − 1



Whole Manifold Estimates Hypersurface Estimates

High p estimates are saturated by point type examples

Low p estimates are saturated by tube type examples



Localisation near level sets

In classical mechanics we measure important quantities such as
velocity and acceleration by evaluating an observable q(x , ξ). Since
behaviour is deterministic we can talk about cases when
q(x , ξ) = K .

Quantum Analogue When is u “localised” near q(x , ξ) = K?



Localisation to regions of phase space

Go back to the ”fuzzy” phase space picture

Want to measure how
much of the ”mass” lives
where q(x , ξ) is localised
to K .

Measure this by applying a
semiclassical pseudo with
localised symbol.



Theorem (T. 2015)

Suppose u is a O(h) quasimode of p(x , hD) and α ≤ 1/2. Let
χα
q

= Op(χαq ) where

χαq (x , ξ) = χ(h−α|q(x , ξ)|)

χ : R+ → R, Supp(χ) ⊂ [1/2, 1]

Then ∣∣∣∣∣∣q̇(x , hD)χα
q
u
∣∣∣∣∣∣
L2

. hα/2 ||u||L2

Can localised around other points than zero
If |q̇(x , ξ)| ≈ 1 this implies∣∣∣∣∣∣χα

q
u
∣∣∣∣∣∣
L2

. hα/2 ||u||L2

Proof only needs commutator relationship

[p(x , hD), q(x , hD)] = ihOp({p(x , ξ), q(x , ξ)}) + O(h2)



Restricting to actual level sets

We consider the special cases were q(x , ξ) = x1, want to restrict to
H = {x ∈ M | x1 = 0}

Construct an operator Wh such that

hDx1Wh = Whp(x , hD) + O(h∞)

think of this as a change of variables so that p(x , hD)
becomes the operator hDx1 .

Let v = Whu. Then if u is a OL2(h) quasimode of p(x , hD), v
is a OL2(h) quasimode of hDx1 .

Approximate solutions to hDx1v = 0 are easy to treat.

Use a local representation of Wh in terms of a phase function
to study its mapping properties.



Theorem (T. 2016)

Let ν(x , ξ) = {p(x , ξ), x1} and H = {x | x1 = 0} then

||ν(x , hD)u||L2(H) . ||u||L2 (1)∣∣∣∣∣∣ν1/2(x , hD)u
∣∣∣∣∣∣
L2(H)

. ||u||L2 (2)

where ν1/2(x , hD) is a suitable regularisation of
√
ν.

The operator ν(x , hD) should be interpreted as the quantum
version of normal velocity.

This theorem says that even though a quasimode can
concentrate, its normal velocity can’t.

(2) is much stronger where the symbol of ν(x , hD) is small.



Current Directions

Developing ways to deal with long time propagation
particularly focussed on including geometry into the analysis.

Restriction to general level sets

Small scale behaviour (up to the minimum scale given by the
uncertainty principle)

Applications to nonlinear PDE


