Quantisation and localisation dynamical observables

Melissa Tacy

University of Wollongong, Analysis Seminar

27 September 2016

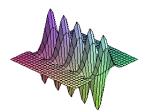
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Quantum Mechanics

Dynamics described by Schrödinger equation

$$rac{\hbar}{i}rac{\partial}{\partial t}\Psi(t,x)=\widehat{H}\Psi(t,x)$$

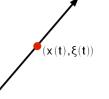
 $\|\Psi\|_{L^2}$ interpreted probabilistically



Classical Mechanics

Dynamics described by phase space flow.

$$\dot{x}(t) = \nabla_{\xi} H(x,\xi)$$
$$\dot{\xi}(t) = -\nabla_{x} H(x,\xi)$$



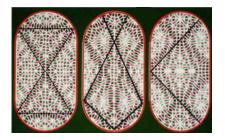
છ ૧૯

"The predictions of quantum mechanics and classical mechanics agree for large systems"

- A large system has relatively high energy so we interpret this as a statement about high energy systems.
- One way that quantum and classical mechanics can agree is for quantum states to concentrate on classical trajectories.
- The strongest form of this concentration is often referred to as a "scar"

Suppose $H(x,\xi)$ is the Hamiltonian of a system (that is it defines the energy). The classical flow associated with $H(x,\xi)$ is

$$\begin{cases} \dot{x}(t) = \partial_{\xi} H(x,\xi) \\ \dot{\xi}(t) = -\partial_{x} H(x,\xi) \end{cases}$$



Intuition is that we should see concentration of quantum states near stable orbits Measurable quantities are called observables. They are given by a symbol $q(x,\xi)$ which evolves under the equation

$$\dot{q}_t(x,\xi) = \{q_t(x,\xi), H(x,\xi)\} = \sum_j \frac{\partial H}{\partial \xi_j} \frac{\partial q}{\partial x_j} - \frac{\partial H}{\partial x_j} \frac{\partial q}{\partial \xi_j}$$

Note that $H(x,\xi)$ is constant in time (that is energy is conserved).

Some Important Observables

$$\begin{array}{lll} \dot{x}_i &=& \{x_i, H(x,\xi)\} & \text{Velocity} \\ \ddot{x}_i &=& \{\dot{x}_i, H(x,\xi)\} & \text{Acceleration} \\ \dddot{x}_i &=& \{\ddot{x}_i, H(x,\xi)\} & \text{Jerk} \end{array}$$

Stationary States

Important set of solutions to Schrödinger equation

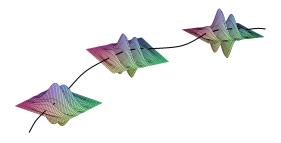
$$\Psi(t, x) = e^{rac{i}{\hbar}t\lambda^2}u(x)$$

 $\widehat{H}u = \lambda^2 u$

- λ^2 is interpreted as energy E
- The L^2 mass $||u||_{L^2(X)}$ gives the probability of particle being in the set X.
- We want to understand concentrations of the eigenfunction (stationary state) *u* and how they relate to dynamics.

Intuition - Wave Packets

Heuristically think of eigenfunction as being made of of wave packets tracking the classical flow.



- Packets are localised in frequency and space
- Concentration in a region is related to time packets spend there

• Heuristic breaks down in time due to dispersion

Semiclassical Techniques

It is convenient to work in the semiclassical framework. Define a semiclassical pseudodifferential operator p(x, hD) as

$$p(x,hD)u = Op_h u = \frac{1}{(2\pi h)^n} \int e^{\frac{i}{h} \langle x-y,\xi \rangle} p(x,\xi) u(y) d\xi dy$$

Set h = 1 to get the standard pseudodifferential calculus

$$\xi_i
ightarrow hD_{x_i}$$

 $|\xi|^2
ightarrow h^2 \Delta$

Very important identity

$$[p(x, hD), q(x, hD)] = ihOp_h(\{p(x, \xi), q(x, \xi)\}) + O(h^2)$$

The principal symbol of the commutator is given by the Poisson bracket

Suppose u is a Laplacian eigenfunction we can convert to semiclassical framework

$$(\Delta - \lambda^2)u = 0
ightarrow (h^2 \Delta - 1)u = 0$$

where $h = \lambda^{-1}$. So instead of eigenfunctions we study solutions to

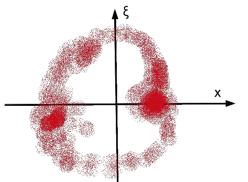
$$p(x,hD)u=0$$

or quasimodes

$$p(x,hD)u = O_{L^2}(h^\beta)$$

We can look at a number of different β , it is common to look at $\beta = 1$ (or order *h*) quasimodes.

Think of *u* as having a "fuzzy" phase space picture



Want to measure how much of the "mass" lives where $q(x, \xi)$ is localised to some value. For instance where $x \approx 1$.

Measure this by applying a semiclassical pseudo with localised symbol.

・ロト ・四ト ・ヨト ・ヨ

Suppose $\chi(x,\xi)$ is compactly supported in T^*M . We then localise u to the support of $\chi(x,\xi)$ by considering

 $\chi(x,hD)u$

How good a quasimode is this?

$$p(x, hD)\chi(x, hD)u = \chi(x, hD)p(x, hD)u + hOp_h(\{p(x, \xi), \chi(x, \xi)\})u + O_{L^2}(h^2 ||u||_{L^2})$$

So if *u* is an order *h* quasimode $\chi(x, hD)u$ is also one. This is one of the reasons why we tend to work with these quasimodes.

Often want to study functions localised to a region the shrinks as $h \rightarrow 0$. Such as $\chi(h^{-\alpha}x_i)u$ (the function localised to the hypersurface $x_i = 0$).

- In this case we do not preserve order h quasimodes.
- We still have

$$p(x, hD)\chi(h^{-\alpha}x_{i})u = \chi(x, hD)p(x, hD)u + hOp_{h}(\{p(x, \xi), \chi(h^{-\alpha}x_{i})\})u + O_{L^{2}}(h^{2-2\alpha} ||u||_{L^{2}})$$

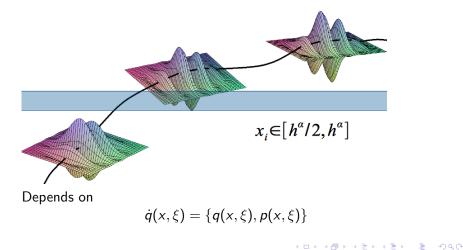
Mapping norm of this depends on

$$\{p(x,\xi),\chi(h^{-\alpha}x_i)\} = h^{-\alpha}\chi'(h^{-\alpha}x_1)\{p(x,\xi),x_i\}$$

Appear to loose a whole factor of h^{-α} but this is not the full story.

Back to Intuition

How long can packets remain in a region?



Theorem (T. 2015)

Suppose u is a O(h) quasimode of p(x, hD) and $\alpha \le 1/2$. Let $\chi^{\alpha}_{q} = Op(\chi^{\alpha}_{q})$ where

$$\chi_q^{\alpha}(x,\xi) = \chi(h^{-\alpha}|q(x,\xi)|)$$

$$\chi: \mathbb{R}^+ \to \mathbb{R}, Supp(\chi) \subset [1/2, 1]$$

Then

$$\left\|\dot{q}(x,hD)\chi^{lpha}_{oldsymbol{q}}u
ight\|_{L^{2}}\lesssim h^{lpha/2}\left\|u
ight\|_{L^{2}}$$

- Can localised around other points than zero
- If $|\dot{q}(x,\xi)| pprox 1$ this implies

$$\left\|\boldsymbol{\chi}_{\boldsymbol{q}}^{\boldsymbol{\alpha}}\boldsymbol{u}\right\|_{L^{2}} \lesssim h^{\alpha/2} \left\|\boldsymbol{u}\right\|_{L^{2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof Sketch

Use commutation identity. Let ζ be defined so that $\zeta' = \chi^2$.

Consider $[p(x, hD), \zeta_{q}^{\alpha}]$ its symbol is given by

$$ih\{p(x,\xi),\zeta(h^{-\alpha}|q(x,\xi)|)\} + O(h^{2-2\alpha})$$

= $ih^{1-\alpha}\{p(x,\xi),q(x,\xi)\}\zeta'(h^{-\alpha}|q(x,\xi)|) + O(h^{2-2\alpha})$
= $ih^{1-\alpha}\dot{q}(x,\xi)\chi^{2}(h^{-\alpha}|q(x,\xi)|) + O(h^{2-2\alpha})$

Up to $O(h^{1-\alpha})$ error

$$\langle \dot{q}(x,hD)\chi^{\alpha}_{q}u,\dot{q}(x,hD)\chi^{\alpha}_{q}u\rangle = \langle \dot{q}(x,hD)u,\dot{q}(x,hD)(\chi^{\alpha}_{q})^{2}u\rangle$$

Insert the commutation identity for to get

$$=h^{lpha-1}\langle \dot{q}(x,hD)u,[p(x,hD),\zeta^{lpha}_{m{q}}]u
angle$$

$$= h^{\alpha-1} \left(\langle p^{\star}(x,hD)\dot{q}(x,hD)u, \zeta^{\alpha}_{\boldsymbol{q}}u \rangle + \langle \dot{q}(x,hD)u, \zeta^{\alpha}_{\boldsymbol{q}}p(x,hD)u \rangle \right)$$

and use the fact that $p(x,hD)u = O_{L^2}(h)$ to get

$$\langle \dot{q}(x,hD)\chi^{\alpha}_{\boldsymbol{q}}u,\dot{q}(x,hD)\chi^{\alpha}_{\boldsymbol{q}}u\rangle\Big|\lesssim h^{\alpha}\|u\|^{2}_{L^{2}}$$

So

$$\left\|\dot{q}(x,hD)\chi_{\boldsymbol{q}}^{\boldsymbol{\alpha}}(x,hD)u\right\|_{L^{2}} \lesssim h^{\alpha/2} \left\|u\right\|_{L^{2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Immediately tells us that this kind cut off is not as bad as we originally thought.
- Major error is given by

$$\left\|p(x,hD)\chi_{\boldsymbol{q}}^{\alpha}(x,hD)u\right\|_{L^{2}} \lesssim h^{1-\alpha}\left\|\dot{q}(x,hD)\chi_{\boldsymbol{q}}^{\prime\alpha}(x,hD)u\right\|_{L^{2}}$$

So we can say that the quasimode error is in fact $h^{1-\alpha/2}$ rather than $h^{1-\alpha}$ for general cut offs on scale h^{α}

• Even better for inner products. Same arguments yield

$$\left| \langle u, p(x, hD) \chi_{\boldsymbol{q}}^{\boldsymbol{\alpha}}(x, hD) u \rangle \right| \lesssim h \| u \|_{L^2}^2$$

Localisation under the $h^{1/2}$ scale

- Commutation arguments break down due to the uncertainty principle.
- Need to be careful with definition of χ^{α}_{a} .

Toy Model

Suppose $p(x,\xi) = \xi_1$ and $q(x,\xi) = x_1$. That is

$$hD_{x_1}u=O_{L^2}(h)$$

Since $q(x,\xi)$ is ξ independent can define χ_q^{α} for any α . In fact can even talk about restriction to $x_1 = 0$

Let $\theta(x_1)$ be the Heaviside function. Consider

$$hD_{x_1}\theta(x_1)u = \theta(x_1)hD_{x_1}u + h\delta(x_1)u$$

So

$$h\langle u, u \rangle_{x'} = h\langle u, \delta(x_1)u \rangle = \langle u, \theta(x_1)hD_{x_1}u \rangle + \langle hD_{x_1}u, \theta(x_1)u \rangle$$

That is

$$\|u\|_{L^2_{x'}} \lesssim \|u\|_{L^2}$$

The best case, there is no concentration on the hypersurface at all (Could be up to $h^{-1/2}$ concentration). How do we treat more general p(x, hD)?

Restriction of Quasimodes of general p(x, hD)

- Construct an operator W_h such that $hD_{x_1}W_h = W_hp(x, hD) + O(h^{\infty})$
- This can be done as a semiclassical parametrix

$$W_h u = \frac{1}{(2\pi h)^n} \int e^{\frac{i}{h} \langle x', \xi' \rangle + \phi(x_1, y, \xi)} b(x_1, y, \xi) u(y) d\xi dy$$

$$\phi_{x_1}(x_1, y, \xi) + p(y, \nabla_y \phi) = 0 \quad \phi(0, y, \xi) = -\langle y, \xi \rangle$$

- This W_h also has the property that $W_h u \big|_{x_1=0} = u \big|_{x_1=0}$
- Let $v = W_h u$, now v is a quasimode of hD_{x_1} and we can use the toy model.
- Need to estimate the mapping norms of W_h .

Theorem (T. 2016)

Let $\nu(x,\xi) = \{p(x,\xi), x_1\}$ and $H = \{x \mid x_1 = 0\}$ then

$$\|\nu(x,hD)u\|_{L^{2}(H)} \lesssim \|u\|_{L^{2}}$$
 (1)

$$\left\| \nu^{1/2}(x,hD)u \right\|_{L^{2}(H)} \lesssim \|u\|_{L^{2}}$$
 (2)

where $\nu^{1/2}(x, hD)$ is a suitable regularisation of $\sqrt{\nu}$.

- The operator ν(x, hD) should be interpreted as the quantum version of normal velocity.
- This theorem says that even though a quasimode can concentrate, its normal velocity can't.
- (2) is much stronger where the symbol of $\nu(x, hD)$ is small.

Examples

These theorems hold for all smooth symbols $p(x,\xi)$. We will look at examples of the form $p(\xi)$ and construct solutions on the Fourier side.

$$\mathcal{F}_h[u] = \frac{1}{(2\pi h)^{n/2}} \int e^{-\frac{i}{h} \langle x, \xi \rangle} u(x) dx$$

Properties

$$\mathcal{F}_h[hD_{x_i}u] = \xi_i \mathcal{F}_h[u]$$

and

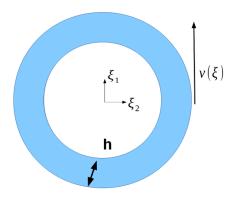
$$\|\mathcal{F}_h[u]\|_{L^2} = \|u\|_{L^2}$$

Will specialise to 2D case, higher dimensions are similar

Example 1

Let $p(x,\xi) = |\xi|^2 - 1$, then $\nu(x,\xi) = 2\xi_1$. This is the model flat Laplacian. On the Fourier side we need

$$(1-|\xi|^2)\mathcal{F}_h u = O_{L^2}(h)$$



Behaviour of concentration depends on the size of $|\nu(x,\xi)|$.

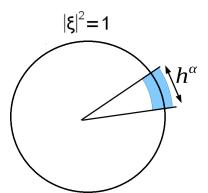
The extremes are when $|\nu(x,\xi)| \approx 1$ and when $|\nu(x,\xi)| < h^{1/2}$.

Let $0 \le \alpha \le 1/2$

$$\chi^h_lpha(r,\omega) = egin{cases} 1 & ext{if } |r-1| < h, |\omega-\omega_0| < h^lpha, \ 0 & ext{otherwise}. \end{cases}$$

Then set

$$f^h_{\alpha}(\xi) = f^h_{\alpha}(r,\omega) = h^{-1/2 - \alpha/2} \chi(r,\omega).$$



The function

$$T^h_\alpha = \mathcal{F}_h^{-1}[f^h_\alpha]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is an L^2 normalised, order h quasimode.

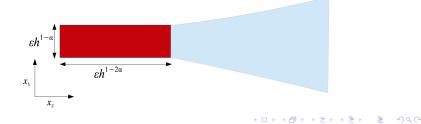
$$\nu(x,hD)T^h_{\alpha}(x)=\frac{1}{(2\pi h)}\int_{\mathbb{R}^n}e^{\frac{i}{h}\langle x,\xi\rangle}2\xi_1f_{\alpha}(\xi)\,d\xi.$$

We write

$$\nu(x,hD)T_{\alpha}^{h}(x)\big|_{H} = \frac{h^{-1/2-\alpha/2-1/2}e^{\frac{i}{h}x_{2}}}{2\pi}\int_{\mathbb{R}^{n}}e^{\frac{i}{h}x_{2}(\xi_{2}-1)}2\xi_{1}\chi_{\alpha}(\xi)\,d\xi.$$

Note that if $|x_2| < \epsilon h^{1-2\alpha}$ the factor $e^{\frac{i}{h}x_2(\xi_2-1)}$ does not oscillate so in this region

$$|
u(x,hD)T^h_{lpha}(x)| pprox ch^{-1/2+3lpha/2}$$



So we have a $h^{1-2\alpha}$ region where

$$\left\|\nu(x,hD)T_{\alpha}^{h}\right\| \approx ch^{-1/2+3\alpha/2}$$
$$\left\|\nu(x,hD)T_{\alpha}^{h}\right\|_{L^{2}} \approx h^{\alpha/2}$$

and

$$\left|\langle T^{h}_{\alpha}, \nu(x, hD) T^{h}_{\alpha} \rangle\right| \approx 1$$

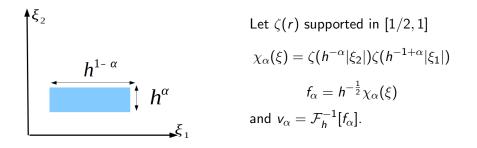
This is a Laplacian example however the result is true for symbols very far from the Laplacian. For example

$$p(\xi) = \xi_2 \xi_1$$

Does not obey curvature conditions on it's characteristic set $\{\xi \mid p(\xi) = 0\}$. Can have maximal $h^{-1/2}$ concentration on $x_1 = 0$.

Example 2

Let $p(x,\xi) = \xi_2 \xi_1$, in this case $\nu(x,\xi) = \xi_2$. Must have $\xi_1 \xi_2 f_\alpha = O_{L^2}(h).$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Localised where $|\nu(x,\xi)| \approx h^{lpha}$

$$\nu(x,hD)v_{\alpha}|_{\mathcal{H}}=\frac{h^{-\frac{1}{2}}}{(2\pi h)}\int e^{\frac{i}{h}x_{2}\cdot\xi_{2}}\xi_{2}\chi_{\alpha}(\xi)d\xi.$$

Now for $|x_2| < h^{1-\alpha}$ the $e^{\frac{i}{h}x_2\cdot\xi_2}$ factor does not significantly oscillate. So in this region

 $|\nu_{\alpha}(x,hD)v_{\alpha}| > h^{\alpha-\frac{1}{2}}$

So

$$\|\nu_{\alpha}(x,hD)v_{\alpha}\|_{L^{2}(H)}>ch^{\alpha/2}.$$

and

 $|\langle v_{\alpha}, \nu_{\alpha}(x, hD)v_{\alpha}\rangle| \approx 1$

Further work

- As we can localise quasimodes with less loss to the quasimode error we can use these results to study local (in *h*) properties of quasimodes
- Localisation beyond the $h^{1/2}$ scale for other symbols $q(x,\xi)$
- Need to define exactly what this means for general symbols (it is clear for restriction to hypersurfaces)