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Classical and Quantum Mechanics

Quantum Mechanics

Dynamics described by
Schrödinger equation

~
i

∂

∂t
Ψ(t, x) = ĤΨ(t, x)

||Ψ||L2 interpreted probabilistically

Classical Mechanics

Dynamics described by phase
space flow.

ẋ(t) = ∇ξH(x , ξ)

ξ̇(t) = −∇xH(x , ξ)



Correspondence Principle

“The predictions of quantum mechanics and classical mechanics
agree for large systems”

A large system has relatively high energy so we interpret this
as a statement about high energy systems.

One way that quantum and classical mechanics can agree is
for quantum states to concentrate on classical trajectories.

The strongest form of this concentration is often referred to
as a “scar”



Classical Dynamics

Suppose H(x , ξ) is the Hamiltonian of a system (that is it defines
the energy). The classical flow associated with H(x , ξ) is{

ẋ(t) = ∂ξH(x , ξ)

ξ̇(t) = −∂xH(x , ξ)

Intuition is that we should
see concentration of
quantum states near
stable orbits



Dynamical Observables

Measurable quantities are called observables. They are given by a
symbol q(x , ξ) which evolves under the equation

q̇t(x , ξ) = {qt(x , ξ),H(x , ξ)} =
∑
j

∂H

∂ξj

∂q

∂xj
− ∂H

∂xj

∂q

∂ξj

Note that H(x , ξ) is constant in time (that is energy is conserved).

Some Important Observables

ẋi = {xi ,H(x , ξ)} Velocity
ẍi = {ẋi ,H(x , ξ)} Acceleration

...
x i = {ẍi ,H(x , ξ)} Jerk



Stationary States

Important set of solutions to Schrödinger equation

Ψ(t, x) = e
i
~ tλ

2
u(x)

Ĥu = λ2u

λ2 is interpreted as energy E

The L2 mass ||u||L2(X ) gives the probability of particle being in
the set X .

We want to understand concentrations of the eigenfunction
(stationary state) u and how they relate to dynamics.



Intuition - Wave Packets

Heuristically think of eigenfunction as being made of of wave
packets tracking the classical flow.

Packets are localised in frequency and space

Concentration in a region is related to time packets spend
there

Heuristic breaks down in time due to dispersion



Semiclassical Techniques

It is convenient to work in the semiclassical framework. Define a
semiclassical pseudodifferential operator p(x , hD) as

p(x , hD)u = Ophu =
1

(2πh)n

∫
e

i
h
〈x−y ,ξ〉p(x , ξ)u(y)dξdy

Set h = 1 to get the standard pseudodifferential calculus

ξi → hDxi

|ξ|2 → h2∆

Very important identity

[p(x , hD), q(x , hD)] = ihOph({p(x , ξ), q(x , ξ)}) + O(h2)

The principal symbol of the commutator is given by the Poisson
bracket



Eigenfunctions and Quasimodes

Suppose u is a Laplacian eigenfunction we can convert to
semiclassical framework

(∆− λ2)u = 0→ (h2∆− 1)u = 0

where h = λ−1. So instead of eigenfunctions we study solutions to

p(x , hD)u = 0

or quasimodes
p(x , hD)u = OL2(hβ)

We can look at a number of different β, it is common to look at
β = 1 (or order h) quasimodes.



Localisation to regions of phase space

Think of u as having a ”fuzzy” phase space picture

Want to measure how
much of the ”mass” lives
where q(x , ξ) is localised
to some value. For
instance where x ≈ 1.

Measure this by applying a
semiclassical pseudo with
localised symbol.



Effect of localisation on Quasimodes

Suppose χ(x , ξ) is compactly supported in T ?M. We then localise
u to the support of χ(x , ξ) by considering

χ(x , hD)u

How good a quasimode is this?

p(x , hD)χ(x , hD)u = χ(x , hD)p(x , hD)u

+ hOph({p(x , ξ), χ(x , ξ)})u + OL2(h2 ||u||L2)

So if u is an order h quasimode χ(x , hD)u is also one. This is one
of the reasons why we tend to work with these quasimodes.



h-Dependent Localisation

Often want to study functions localised to a region the shrinks as
h→ 0. Such as χ(h−αxi )u (the function localised to the
hypersurface xi = 0).

In this case we do not preserve order h quasimodes.

We still have

p(x , hD)χ(h−αxi )u = χ(x , hD)p(x , hD)u

+ hOph({p(x , ξ), χ(h−αxi )})u + OL2(h2−2α ||u||L2)

Mapping norm of this depends on

{p(x , ξ), χ(h−αxi )} = h−αχ′(h−αx1){p(x , ξ), xi}

Appear to loose a whole factor of h−α but this is not the full
story.



Back to Intuition

How long can packets remain in a region?

Depends on
q̇(x , ξ) = {q(x , ξ), p(x , ξ)}



Theorem (T. 2015)

Suppose u is a O(h) quasimode of p(x , hD) and α ≤ 1/2. Let
χα
q

= Op(χαq ) where

χαq (x , ξ) = χ(h−α|q(x , ξ)|)

χ : R+ → R, Supp(χ) ⊂ [1/2, 1]

Then ∣∣∣∣∣∣q̇(x , hD)χα
q
u
∣∣∣∣∣∣
L2

. hα/2 ||u||L2

Can localised around other points than zero

If |q̇(x , ξ)| ≈ 1 this implies∣∣∣∣∣∣χα
q
u
∣∣∣∣∣∣
L2

. hα/2 ||u||L2



Proof Sketch

Use commutation identity. Let ζ be defined so that ζ ′ = χ2.

Consider [p(x , hD), ζα
q

] its symbol is given by

ih{p(x , ξ), ζ(h−α|q(x , ξ)|)}+ O(h2−2α)

= ih1−α{p(x , ξ), q(x , ξ)}ζ ′(h−α|q(x , ξ)|) + O(h2−2α)

= ih1−αq̇(x , ξ)χ2(h−α|q(x , ξ)|) + O(h2−2α)



Up to O(h1−α) error

〈q̇(x , hD)χα
q
u, q̇(x , hD)χα

q
u〉 = 〈q̇(x , hD)u, q̇(x , hD)(χα

q
)2u〉

Insert the commutation identity for to get

= hα−1〈q̇(x , hD)u, [p(x , hD), ζα
q

]u〉

= hα−1
(
〈p?(x , hD)q̇(x , hD)u, ζα

q
u〉+ 〈q̇(x , hD)u, ζα

q
p(x , hD)u〉

)
and use the fact that p(x , hD)u = OL2(h) to get∣∣∣〈q̇(x , hD)χα

q
u, q̇(x , hD)χα

q
u〉
∣∣∣ . hα ||u||2L2

So ∣∣∣∣∣∣q̇(x , hD)χα
q

(x , hD)u
∣∣∣∣∣∣
L2

. hα/2 ||u||L2



Application to quasimode error

Immediately tells us that this kind cut off is not as bad as we
originally thought.

Major error is given by∣∣∣∣∣∣p(x , hD)χα
q

(x , hD)u
∣∣∣∣∣∣
L2

. h1−α
∣∣∣∣q̇(x , hD)χ′αq (x , hD)u

∣∣∣∣
L2

So we can say that the quasimode error is in fact h1−α/2

rather than h1−α for general cut offs on scale hα

Even better for inner products. Same arguments yield∣∣∣〈u, p(x , hD)χα
q

(x , hD)u〉
∣∣∣ . h ||u||2L2



Localisation under the h1/2 scale

Commutation arguments break down due to the uncertainty
principle.

Need to be careful with definition of χα
q

.

Toy Model

Suppose p(x , ξ) = ξ1 and q(x , ξ) = x1. That is

hDx1u = OL2(h)

Since q(x , ξ) is ξ independent can define χα
q

for any α. In fact can
even talk about restriction to x1 = 0



Restriction of Quasimodes of hDx1

Let θ(x1) be the Heaviside function. Consider

hDx1θ(x1)u = θ(x1)hDx1u + hδ(x1)u

So

h〈u, u〉x ′ = h〈u, δ(x1)u〉 = 〈u, θ(x1)hDx1u〉+ 〈hDx1u, θ(x1)u〉

That is
||u||L2

x′
. ||u||L2

The best case, there is no concentration on the hypersurface at all
(Could be up to h−1/2 concentration).
How do we treat more general p(x , hD)?



Restriction of Quasimodes of general p(x , hD)

Construct an operator Wh such that
hDx1Wh = Whp(x , hD) + O(h∞)

This can be done as a semiclassical parametrix

Whu =
1

(2πh)n

∫
e

i
h
〈x ′,ξ′〉+φ(x1,y ,ξ)b(x1, y , ξ)u(y)dξdy

φx1(x1, y , ξ) + p(y ,∇yφ) = 0 φ(0, y , ξ) = −〈y , ξ〉

This Wh also has the property that Whu
∣∣
x1=0

= u
∣∣
x1=0

Let v = Whu, now v is a quasimode of hDx1 and we can use
the toy model.

Need to estimate the mapping norms of Wh.



Theorem (T. 2016)

Let ν(x , ξ) = {p(x , ξ), x1} and H = {x | x1 = 0} then

||ν(x , hD)u||L2(H) . ||u||L2 (1)∣∣∣∣∣∣ν1/2(x , hD)u
∣∣∣∣∣∣
L2(H)

. ||u||L2 (2)

where ν1/2(x , hD) is a suitable regularisation of
√
ν.

The operator ν(x , hD) should be interpreted as the quantum
version of normal velocity.

This theorem says that even though a quasimode can
concentrate, its normal velocity can’t.

(2) is much stronger where the symbol of ν(x , hD) is small.



Examples

These theorems hold for all smooth symbols p(x , ξ). We will look
at examples of the form p(ξ) and construct solutions on the
Fourier side.

Fh[u] =
1

(2πh)n/2

∫
e−

i
h
〈x ,ξ〉u(x)dx

Properties
Fh[hDxiu] = ξiFh[u]

and
||Fh[u]||L2 = ||u||L2

Will specialise to 2D case, higher dimensions are similar



Example 1

Let p(x , ξ) = |ξ|2 − 1, then ν(x , ξ) = 2ξ1. This is the model flat
Laplacian. On the Fourier side we need

(1− |ξ|2)Fhu = OL2(h)

Behaviour of
concentration depends on
the size of |ν(x , ξ)|.

The extremes are when
|ν(x , ξ)| ≈ 1 and when
|ν(x , ξ)| < h1/2.



Let 0 ≤ α ≤ 1/2

χh
α(r , ω) =

{
1 if |r − 1| < h, |ω − ω0| < hα,

0 otherwise.

Then set
f hα (ξ) = f hα (r , ω) = h−1/2−α/2χ(r , ω).

The function

T h
α = F−1h [f hα ]

is an L2 normalised, order h
quasimode.



ν(x , hD)T h
α(x) =

1

(2πh)

∫
Rn

e
i
h
〈x ,ξ〉2ξ1fα(ξ) dξ.

We write

ν(x , hD)T h
α(x)

∣∣
H

=
h−1/2−α/2−1/2e

i
h
x2

2π

∫
Rn

e
i
h
x2(ξ2−1)2ξ1χα(ξ) dξ.

Note that if |x2| < εh1−2α the factor e
i
h
x2(ξ2−1) does not oscillate

so in this region

|ν(x , hD)T h
α(x)| ≈ ch−1/2+3α/2.



So we have a h1−2α region where

|ν(x , hD)T h
α | ≈ ch−1/2+3α/2∣∣∣∣∣∣ν(x , hD)T h

α

∣∣∣∣∣∣
L2
≈ hα/2

and ∣∣∣〈T h
α , ν(x , hD)T h

α〉
∣∣∣ ≈ 1

This is a Laplacian example however the result is true for symbols
very far from the Laplacian. For example

p(ξ) = ξ2ξ1

Does not obey curvature conditions on it’s characteristic set
{ξ | p(ξ) = 0}. Can have maximal h−1/2 concentration on x1 = 0.



Example 2

Let p(x , ξ) = ξ2ξ1, in this case ν(x , ξ) = ξ2. Must have

ξ1ξ2fα = OL2(h).

Let ζ(r) supported in [1/2, 1]

χα(ξ) = ζ(h−α|ξ2|)ζ(h−1+α|ξ1|)

fα = h−
1
2χα(ξ)

and vα = F−1h [fα].



Localised where |ν(x , ξ)| ≈ hα

ν(x , hD)vα|H =
h−

1
2

(2πh)

∫
e

i
h
x2·ξ2ξ2χα(ξ)dξ.

Now for |x2| < h1−α the e
i
h
x2·ξ2 factor does not significantly

oscillate. So in this region

|να(x , hD)vα| > hα−
1
2

So
||να(x , hD)vα||L2(H) > chα/2.

and
|〈vα, να(x , hD)vα〉| ≈ 1



Further work

As we can localise quasimodes with less loss to the quasimode
error we can use these results to study local (in h) properties
of quasimodes

Localisation beyond the h1/2 scale for other symbols q(x , ξ)

Need to define exactly what this means for general symbols (it
is clear for restriction to hypersurfaces)


