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Abstract
The abstract Strichartz estimates of Keel and Tao

[2] prove LptL
r
x estimates for operators U(t) under a

unitary energy bound ||U(t)f ||L2 . ||f ||L2 and a dis-
persive estimate ||U(s)U?(t)f ||L∞ . |t− s|−σ∞ ||f ||L1 .
This paper presents an extended form of the abstract
Strichartz estimates that assumes a L2 bound similar
to the dispersive estimate, that is ||U(s)U?(t)f ||L2 .
|t−s|−σ2 ||f ||L2 . These Strichartz estimates are useful
for proving LptL

r
x bounds for evolution operators re-

stricted to hypersurfaces. Using a trick derived from
the implicit function theorem, questions about the Lp

size of an approximate eigenfunction of a differential
operator restricted to a hypersurface can be reduced
to the study of just such a restricted evolution oper-
ator.

Introduction
Keel and Tao’s [2] 1998 paper on Strichartz esti-

mates united these estimates for evolution equations
such as the wave and Schrodinger equations. This
was achieved by putting Strichartz estimates in an
abstract setting. Within this setting of a family of
operators U(t) : H → L2(X) (H a Hilbert space)
Keel and Tao reduced proving the ||U(t)f ||LptLrx esti-
mates to proving the bilinear estimate

∣∣∣∣∫∫ 〈(W (s))?F (s), (W (t))?G(t)〉 dsdt
∣∣∣∣ .

||F ||
Lp
′
s Lr

′
x
||G||

Lp
′
t L

r′
x
. (1)

One of the assumptions to obtain the abstract
Strichartz estimates is that U(t) has a uniform L2

bound. This is not necessarily the case for an evo-
lution operator restricted to a hypersurface (or any
other submanifold). This paper extends the ab-
stract Strichartz estimates by allowing the L2 norm
of U(s)U?(t) to have a similar form to the usual
Strichartz L∞ dispersive estimate

||U(s)U?(t)f ||L∞ . |t− s|−σ∞ ||f ||L1 .

Included in these estimates is a (small) semiclassical
parameter h. When performing asymptotic analysis

of eigenfunctions this parameter appears as λ−1 for
λ a large eigenvalue.

As an application of these methods, we consider
an approximate solution to the differential equation
Pu = 0 and ask how large can u be when restricted to
a hypersurface, H. For example, an interesting class
of operators are those such that

Pu = −λ−2∆ + λ−2V (x)− 1.

Here a u such that Pu = 0 is an eigenfunction
of −∆ + V (x) with eigenvalue λ2. In this case
we define the semiclassical parameter as h = λ−1

and allow approximate eigenfunctions in the sense of
Pu = OL2(h). Under some technical assumptions on
P and the family of approximate eigenfunctions u(h),
we obtain

Theorem 1. Let u(h) be a family of semiclassi-
cally microlocalised L2 normalised functions such
that Pu = OL2(h). Further suppose that the sym-
bol p(x, ξ) of P satisfies the following non-degeneracy
conditions when p(x, ξ) = 0

p(x0, ξ0) = 0⇒ ∂ξp(x0, ξ0) 6= 0; (2)

the second fundamental form on
{ξ | p(x0, ξ) = 0} is positive definite;

(3)

then
||u||Lp(H) . h−δ(p)

δ(p) =

{
n−1

2 −
n−1
p , 2n

n−1 ≤ p ≤ ∞
n−1

4 −
n−2
2p , 2 ≤ p ≤ 2n

n−1

.

This result generalises Burq, Gérard and Tzetkov’s
[1] estimates for Laplacian eigenfunctions restricted
to hypersurfaces by moving it into the more gen-
eral semiclassical framework similar to Koch, Tataru
and Zworski’s [3] semiclassical Lp estimates over the
whole manifold.
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1 Extended Strichartz Estimates
Working with the Keel Tao formalism, we have a

family of operators U(t) such that

U(t) : H → L2(X)

for some Hilbert space H and measure space X.

Theorem 2. Let U(t) : H → L2(X) obey the esti-
mates

• For all t, s ∈ R and f ∈ L2(X)

||U(t)U?(s)f ||L2(X) .

h−µ2(h+ |t− s|)−σ2 ||f ||L2(X) (4)

• For all t, s,∈ R and f ∈ L1(X)

||U(t)U?(s)f ||L∞(X) .

h−µ∞(h+ |t− s|)−σ∞ ||f ||L1(X) (5)

then(∫
||U(t)f ||pLr dt

)1/p

. h
−

“
µ∞−µ2
p(σ∞−σ2)

+
σ2µ∞−σ∞µ2

2(σ∞−σ2)

”
(6)

for pairs of (p, r), 2 < p ≤ ∞, 2 ≤ r ≤ ∞ such that
1
p

+
1
r

(σ∞ − σ2) =
σ∞
2
. (7)

Note that the estimate (6) simplifies considerably
when µ∞ = σ∞ and µ2 = σ2, to become(∫

||U(t)f ||pLr dt
)1/p

≤ h−1/p.

The proof of this follows directly from the normal
abstract Strichartz estimates proof. Estimates (4)
and (5) are converted into bilinear forms giving

|〈U(s)?F (s), U(t)?G(t)〉| .
h−µ2(h+ |t− s|)−σ2 ||F (s)||L2 ||G(t)||L2 (8)

and

|〈U(s)?F (s), U(t)?G(t)〉| .
h−µ1(h+ |t− s|)−σ1 ||F (s)||L1 ||G(t)||L1 . (9)

Interpolation between (8) and (9) yields an estimate
of the form

|〈U(s)?F (s), U(t)?G(t)〉| .
h−γ(h+ |t− s|)−γ ||F (s)||Lr′ ||G(t)||Lr′ . (10)

The s and t integrations are estimated via the Hardy-
Littlewood-Soblev inequality. Combining the Hardy-
Littlewood-Soblev and interpolation numerologies
gives the governing equation (7) and estimate (6).

2 Estimating Eigenfunction Size
We attempt to estimate the size of u restricted to

some hypersurface H where u obeys Pu = OL2(h)
for some differential operator P . To turn this into
an evolution equation problem, we use the first non-
degeneracy assumption (2) which by the implicit
function theorem implies that locally we can rewrite
the symbol as

p(x, ξ) = e(x, ξ)(ξ1 − a(x, ξ)).

This symbol has an associated evolution equation

(hDx1 − a(x, hDx′))ũ = O(h)

which gives rise to an evolution operator U(t), where
we let x1 = t. The Lp norm of u over the hypersur-
face can now be recovered from the LptL

r
x Strichartz

estimates on U(t)u(0, x′) where p = r.
The relevant energy (4) and dispersion (5) esti-

mates are obtained by writing U(t) as a Fourier
Integral Operator and making use of phase oscilla-
tions. These estimates make use of the second non-
degeneracy assumption (3) and the method of sta-
tionary phase. The estimates give µ2 = σ2 and
µ∞ = σ∞ and so p = r when p = 2n/(n − 1). This
approach can also be used to obtain Lp bounds for ap-
proximate eigenfunctions restricted to submanifolds
of co-dimension greater than one.
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