Rigidity of Schubert varieties in compact Hermitian symmetric spaces

Dennis The

(joint work with Colleen Robles)

Australian National University

Sept. 28, 2011

55th annual AustMS meeting @ Wollongong

C. Robles and D. The Rigidity of Schubert varieties in CHSS

This talk is about a problem from topology / algebraic geometry originating in the 1960's.

This talk is about a problem from topology / algebraic geometry originating in the 1960's.

Since 1997, substantial progress has been made using differential geometry, representation theory, and Lie algebra cohomology.

 $X = G/P_i$: \mathfrak{g} is \mathbb{C} -simple and 1-graded ($\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$).

Classical	Grassmannians	$A_n/P_i = \mathrm{SL}_{n+1}\mathbb{C}/P_i$
	Odd-dim. quadrics	$B_n/P_1 = \mathrm{SO}_{2n+1}\mathbb{C}/P_1$
	Even-dim. quadrics	$D_n/P_1 = \mathrm{SO}_{2n}\mathbb{C}/P_1$
	Lagrangian Grassmannians	$C_n/P_n = \operatorname{Sp}_{2n}\mathbb{C}/P_n$
	Spinor varieties	$D_n/P_n = \mathrm{SO}_{2n}\mathbb{C}/P_n$
Exceptional	Cayley plane	E_{6}/P_{6}
	Freudenthal variety	E_7/P_7

Take minimal embedding $X \hookrightarrow \mathbb{P}V_{\omega_i}$ to realize X as a projective algebraic variety.

 $X = G/P_i$: \mathfrak{g} is \mathbb{C} -simple and 1-graded ($\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$).

Classical	Grassmannians	$A_n/P_i = \mathrm{SL}_{n+1}\mathbb{C}/P_i$
	Odd-dim. quadrics	$B_n/P_1 = \mathrm{SO}_{2n+1}\mathbb{C}/P_1$
	Even-dim. quadrics	$D_n/P_1 = \mathrm{SO}_{2n}\mathbb{C}/P_1$
	Lagrangian Grassmannians	$C_n/P_n = \mathrm{Sp}_{2n}\mathbb{C}/P_n$
	Spinor varieties	$D_n/P_n = \mathrm{SO}_{2n}\mathbb{C}/P_n$
Exceptional	Cayley plane	E_{6}/P_{6}
	Freudenthal variety	E_7/P_7

Take minimal embedding $X \hookrightarrow \mathbb{P}V_{\omega_1}$ to realize X as a projective algebraic variety.

Smoothability and Schur rigidity

Theorem (Kostant)

 $H_*(G/P,\mathbb{Z})$ is generated by Schubert varieties X_w , $w \in W^{\mathfrak{p}}$.

FACT: X_w are irreducible and most X_w are singular!

Question (Borel-Haefliger 1961):

Can $[X_w]$ be represented by a smooth complex variety?

Smoothability and Schur rigidity

Theorem (Kostant)

 $H_*(G/P,\mathbb{Z})$ is generated by Schubert varieties X_w , $w \in W^{\mathfrak{p}}$.

FACT: X_w are irreducible and most X_w are singular!

Question (Borel-Haefliger 1961):

Can $[X_w]$ be represented by a smooth complex variety?

Definition

 X_w is Schur rigid if for any irred. subvar. $Y \subset X$ with $[Y] = r[X_w]$ $(\exists r \in \mathbb{Z})$, have $Y = g \cdot X_w$ $(\exists g \in G)$. Otw, it's Schur flexible.

 $(X_w \text{ is singular and Schur rigid} \Rightarrow X_w \text{ is not smoothable.})$

CHSS case: ∃ diff. geo. approach to studying Schur rigidity!

Example (Smooth and singular X_w in $X = G/P_i$ CHSS)

- Smooth:
 - linear spaces $\mathbb{P}^k \subset X$.
 - sub-Grassmannian, sub-quadric, sub-LG, sub-spinor variety.

□ ► ▲ □ ► ▲ □ ►

Example (Smooth and singular X_w in $X = G/P_i$ CHSS)

- Smooth:
 - linear spaces $\mathbb{P}^k \subset X$.
 - sub-Grassmannian, sub-quadric, sub-LG, sub-spinor variety.
- Singular:
 - In Gr(2,4), $X_w = \{E \in Gr(2,4) : E \cap \mathbb{C}^2 \neq 0\}$ has dim 3 and is smoothable.
 - In Gr(3,6), X_w = {E ∈ Gr(3,6) : E ∩ C² ≠ 0} has dim 7 and is *not* smoothable. (Hartshorne, Rees, Thomas 1974; used topological techniques of Thom)

伺 ト イヨト イヨト

Walters (1997) and Bryant (2001)

Theorem

Let X be CHSS. Then $[Y] = r[X_w]$ iff Y is an integral variety of a differential system $\mathcal{R}_w \subset Gr(|w|, TX)$, where $|w| = \dim_{\mathbb{C}} X_w$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Walters (1997) and Bryant (2001)

Theorem

Let X be CHSS. Then $[Y] = r[X_w]$ iff Y is an integral variety of a differential system $\mathcal{R}_w \subset Gr(|w|, TX)$, where $|w| = \dim_{\mathbb{C}} X_w$.

Proof sketch.

Use dual basis $\{\phi_v\}$ in cohom: $[Y] = r[X_w]$ iff $\forall v \neq w$, |v| = |w|,

$$\int_{Y} \phi_{\nu} = 0 \quad \stackrel{(*)}{\longleftrightarrow} \quad \phi_{\nu}|_{Y} = 0. \quad (*) : \begin{cases} \text{Kostant (1963):} \\ \phi_{\nu} \text{ are "positive".} \\ (\text{CHSS used here.}) \end{cases}$$

 $\mathcal{R}_w|_x := \{ E \in \operatorname{Gr}(|w|, T_x X) : \phi_v|_E = 0, \ \forall v \neq w, \ |v| = |w| \}.$

Walters and Bryant:

- **(**) smooth X_w in Gr(m, n) and LG(n, 2n)
- 2 maximal linear spaces in classical CHSS
- Singular X_w of low codim. in Gr(m, n)

Theorem (Smooth case, 2007)

Let X be CHSS, other than B_n/P_1 . Any smooth $X_w \subset X$ is Schur rigid except when $X_w \subset X$ is a non-maximal \mathbb{P}^k or $\mathbb{P}^1 \subset C_n/P_n$.

(Have exceptions for trivial topological reasons.)

Theorem (Smooth case, 2007)

Let X be CHSS, other than B_n/P_1 . Any smooth $X_w \subset X$ is Schur rigid except when $X_w \subset X$ is a non-maximal \mathbb{P}^k or $\mathbb{P}^1 \subset C_n/P_n$.

(Have exceptions for trivial topological reasons.)

Technique: Vanishing of a certain Lie alg cohom grp implies rigidity. Used Kostant's thm.

2005: Found a large class of rigid singular X_w in Gr(m, n).

Question: What about singular X_w in other CHSS?

Theorem (Smooth case, 2007)

Let X be CHSS, other than B_n/P_1 . Any smooth $X_w \subset X$ is Schur rigid except when $X_w \subset X$ is a non-maximal \mathbb{P}^k or $\mathbb{P}^1 \subset C_n/P_n$.

(Have exceptions for trivial topological reasons.)

Technique: Vanishing of a certain Lie alg cohom grp implies rigidity. Used Kostant's thm.

2005: Found a large class of rigid singular X_w in Gr(m, n).

Question: What about singular X_w in other CHSS?

Key obstruction:

Kostant's theorem does not apply in the singular cases!

In all CHSS:

- Key technical lemma: New encoding of Schubert varieties.
- Oniform approach to smooth and singular cases: If X_w satisfies H₊ (a "first-order obstruction"), then it is Schur rigid.
- Cohomology: Analogous to Kostant, defined an *algebraic Laplacian*; characterized vanishing of cohomology in terms of representation theory.

 $w \in W^{\mathfrak{p}} \longleftrightarrow \mathfrak{n}_w \subset \mathfrak{g}_{-1}$. Stabilizer in \mathfrak{g}_0 of \mathfrak{n}_w is parabolic \rightsquigarrow submarking $J \subset \delta_{\mathfrak{g}} \setminus \{\mathfrak{i}\}$. Let $Z_J = \sum_{\mathfrak{j} \in J} Z_{\mathfrak{j}}$.

Lemma (Main technical lemma for $X = G/P_i$ CHSS)

 X_w is encoded by (a, J), where $a \in \mathbb{Z}_{\geq 0}$, $J \subset \delta_\mathfrak{g} \setminus \{i\}$, and

$$\mathfrak{n}_{w}=\mathfrak{g}_{-1,0}\oplus...\oplus\mathfrak{g}_{-1,-\mathsf{a}}.$$

Moreover, X_w is smooth iff a = 0.

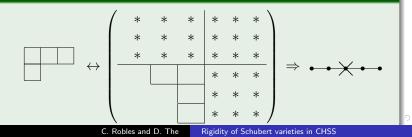
 $w \in W^{\mathfrak{p}} \longleftrightarrow \mathfrak{n}_{w} \subset \mathfrak{g}_{-1}$. Stabilizer in \mathfrak{g}_{0} of \mathfrak{n}_{w} is parabolic \rightsquigarrow submarking $J \subset \delta_{\mathfrak{g}} \setminus \{\mathfrak{i}\}$. Let $Z_{J} = \sum_{\mathfrak{j} \in J} Z_{\mathfrak{j}}$.

Lemma (Main technical lemma for $X = G/P_i$ CHSS)

 X_w is encoded by (a, J), where $a \in \mathbb{Z}_{\geq 0}$, $J \subset \delta_\mathfrak{g} \setminus \{i\}$, and

$$\mathfrak{n}_w = \mathfrak{g}_{-1,0} \oplus ... \oplus \mathfrak{g}_{-1,-\mathsf{a}}.$$

Moreover, X_w is smooth iff a = 0.



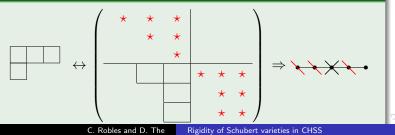
 $w \in W^{\mathfrak{p}} \longleftrightarrow \mathfrak{n}_{w} \subset \mathfrak{g}_{-1}$. Stabilizer in \mathfrak{g}_{0} of \mathfrak{n}_{w} is parabolic \rightsquigarrow submarking $J \subset \delta_{\mathfrak{g}} \setminus \{\mathfrak{i}\}$. Let $Z_{J} = \sum_{\mathfrak{j} \in J} Z_{\mathfrak{j}}$.

Lemma (Main technical lemma for $X = G/P_i$ CHSS)

 X_w is encoded by (a, J), where $a \in \mathbb{Z}_{\geq 0}$, $J \subset \delta_{\mathfrak{g}} \setminus \{i\}$, and

$$\mathfrak{n}_w = \mathfrak{g}_{-1,0} \oplus ... \oplus \mathfrak{g}_{-1,-\mathsf{a}}.$$

Moreover, X_w is smooth iff a = 0.



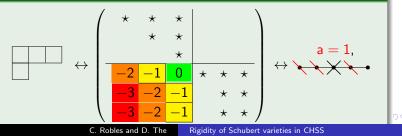
 $w \in W^{\mathfrak{p}} \longleftrightarrow \mathfrak{n}_{w} \subset \mathfrak{g}_{-1}$. Stabilizer in \mathfrak{g}_{0} of \mathfrak{n}_{w} is parabolic \rightsquigarrow submarking $J \subset \delta_{\mathfrak{g}} \setminus \{\mathfrak{i}\}$. Let $Z_{J} = \sum_{\mathfrak{j} \in J} Z_{\mathfrak{j}}$.

Lemma (Main technical lemma for $X = G/P_i$ CHSS)

 X_w is encoded by (a, J), where $a \in \mathbb{Z}_{\geq 0}$, $J \subset \delta_{\mathfrak{g}} \setminus \{i\}$, and

$$\mathfrak{n}_{w} = \mathfrak{g}_{-1,0} \oplus ... \oplus \mathfrak{g}_{-1,-\mathsf{a}}.$$

Moreover, X_w is smooth iff a = 0.



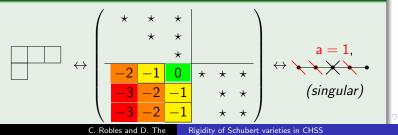
 $w \in W^{\mathfrak{p}} \longleftrightarrow \mathfrak{n}_{w} \subset \mathfrak{g}_{-1}$. Stabilizer in \mathfrak{g}_{0} of \mathfrak{n}_{w} is parabolic \rightsquigarrow submarking $J \subset \delta_{\mathfrak{g}} \setminus \{\mathfrak{i}\}$. Let $Z_{J} = \sum_{\mathfrak{j} \in J} Z_{\mathfrak{j}}$.

Lemma (Main technical lemma for $X = G/P_i$ CHSS)

 X_w is encoded by (a, J), where $a \in \mathbb{Z}_{\geq 0}$, $J \subset \delta_{\mathfrak{g}} \setminus \{i\}$, and

$$\mathfrak{n}_{w} = \mathfrak{g}_{-1,0} \oplus ... \oplus \mathfrak{g}_{-1,-\mathsf{a}}.$$

Moreover, X_w is smooth iff a = 0.



Rigidity result for LG(n, 2n)

Theorem

Let
$$X_w \subset LG(n, 2n)$$
. Let $S = J \cup \{n\} \subset \delta_{C_n}$. If

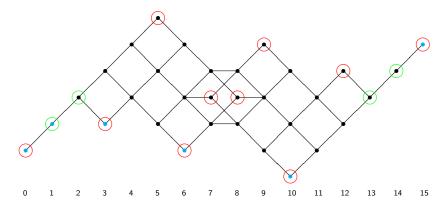
$$|\mathsf{J}| = \mathsf{a}: \ \ \mathsf{S}^* \perp \qquad \textit{or} \qquad |\mathsf{J}| = \mathsf{a} + 1: \ \ \mathsf{S} \perp$$

then X_w is Schur rigid.

Note: $S^* = do a Dynkin diagram automorphism of <math>S \setminus \{n\}$.

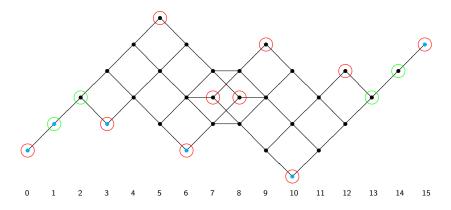
・ 同 ト ・ ヨ ト ・ ヨ ト …

Schubert varieties in $X^{15} = LG(5, 10)$



• smooth \bigcirc H₊ holds, so Schur rigid \bigcirc (trivially) Schur flexible

Schubert varieties in $X^{15} = LG(5, 10)$



• smooth \bigcirc H₊ holds, so Schur rigid \bigcirc (trivially) Schur flexible

A posteriori: Our Schur rigid list is invariant under Poincare duality!

Ideas in the analysis - 1: Schubert rigidity

Let B_w be the *P*-orbit of \mathfrak{n}_w . Define $\mathcal{B}_w|_{gP} = g_*B_w$. Always have

$$\mathcal{B}_{w} \subset \mathcal{R}_{w}.$$

Definition

 X_w is Schubert rigid if every irreducible integral variety Y of \mathcal{B}_w is of the form $Y = g \cdot X_w$ for some $g \in G$.

Theorem (Bryant, Hong)

 X_w is Schur rigid iff X_w is Schubert rigid and $B_w = R_w$.

 $B_w = R_w$ is assessed by comparing tangent spaces.

How to study Schubert rigidity?

Ideas in the analysis - 2: Lift to a frame bundle

IDEA: Lift \mathcal{B}_w to a frame bundle $\mathcal{G} \to X$.

- $o \in X \leftrightarrow h.w.$ line $[v_0] \in \mathbb{P}V.$
- Distinguished flag: $\mathbb{C}v_0 \subset \mathbb{C}v_0 \oplus \mathfrak{n}_w \cdot v_0 \subset \mathbb{C}v_0 \oplus \mathfrak{g}_{-1} \cdot v_0.$
- Fix an adapted frame v for V. Take $\mathcal{G} = \{g \cdot v : g \in G\}$.

Ideas in the analysis - 2: Lift to a frame bundle

IDEA: Lift \mathcal{B}_w to a frame bundle $\mathcal{G} \to X$.

- $o \in X \leftrightarrow h.w.$ line $[v_0] \in \mathbb{P}V.$
- Distinguished flag: $\mathbb{C}v_0 \subset \mathbb{C}v_0 \oplus \mathfrak{n}_w \cdot v_0 \subset \mathbb{C}v_0 \oplus \mathfrak{g}_{-1} \cdot v_0.$
- Fix an adapted frame v for V. Take $\mathcal{G} = \{g \cdot v : g \in G\}$.

 ϑ : MC form on \mathcal{G} . Let $\mathfrak{n}_w^{\perp} \subset \mathfrak{g}_{-1}$ compl. root spaces to \mathfrak{n}_w . Schubert system $\tilde{\mathcal{B}}_w$ on \mathcal{G} :

$$\vartheta_{\mathfrak{n}_w^\perp} = 0 \qquad + \qquad ext{independence condition}$$

Ideas in the analysis - 2: Lift to a frame bundle

IDEA: Lift \mathcal{B}_w to a frame bundle $\mathcal{G} \to X$.

- $o \in X \leftrightarrow h.w.$ line $[v_0] \in \mathbb{P}V.$
- Distinguished flag: $\mathbb{C}v_0 \subset \mathbb{C}v_0 \oplus \mathfrak{n}_w \cdot v_0 \subset \mathbb{C}v_0 \oplus \mathfrak{g}_{-1} \cdot v_0.$
- Fix an adapted frame v for V. Take $\mathcal{G} = \{g \cdot v : g \in G\}$.

 ϑ : MC form on \mathcal{G} . Let $\mathfrak{n}_w^{\perp} \subset \mathfrak{g}_{-1}$ compl. root spaces to \mathfrak{n}_w . Schubert system $\tilde{\mathcal{B}}_w$ on \mathcal{G} :

$$\vartheta_{\mathfrak{n}_{w}^{\perp}} = 0 +$$
 independence condition

Proposition

Int. mflds of $\tilde{\mathcal{B}}_w$ are adapted frame bdles \mathcal{F} over int. mflds of \mathcal{B}_w .

$$\vartheta_{\mathfrak{n}_w^\perp} = 0 \quad \stackrel{^{\mathsf{MC eqn}}}{\Rightarrow} \quad \vartheta_{0,-} = \lambda(\vartheta_{\mathfrak{n}_w}), \quad \text{where} \quad \lambda: \mathcal{F} \to \mathfrak{g}_{0,-} \otimes \mathfrak{n}_w^*$$

In fact, $\lambda : \mathcal{F} \to \frac{\ker \delta^1}{\operatorname{im} \delta^0} = \frac{\operatorname{torsion \ constraints}}{\operatorname{frame \ normalizations}}$ Choomology! C. Robles and D. The Rigidity of Schubert varieties in CHSS

9 $G_w = \text{sym. group of } wX_w = \overline{N_w \cdot o} \text{ and } \mathfrak{g}_w \text{ its Lie algebra.}$

2 $\mathfrak{g}_w^{\perp} =$ complementary root spaces to \mathfrak{g}_w in \mathfrak{g} .

Cohomology group of interest:

$$H^1 = H^1(\mathfrak{n}_w, \mathfrak{g}_w^{\perp}).$$

FACT: \mathfrak{g}_w^{\perp} is an \mathfrak{n}_w -module: $u \cdot z = [u, z]_{\mathfrak{g}_w^{\perp}}$. \therefore Lie alg cohom!

9 $G_w = \text{sym. group of } wX_w = \overline{N_w \cdot o} \text{ and } \mathfrak{g}_w \text{ its Lie algebra.}$

2 $\mathfrak{g}_w^{\perp} =$ complementary root spaces to \mathfrak{g}_w in \mathfrak{g} .

Cohomology group of interest:

$$H^1 = H^1(\mathfrak{n}_w, \mathfrak{g}_w^{\perp}).$$

FACT: \mathfrak{g}_w^{\perp} is an \mathfrak{n}_w -module: $u \cdot z = [u, z]_{\mathfrak{g}_w^{\perp}}$. \therefore Lie alg cohom! Grade H^1 using Z_i and Z_J .

$$H_+$$
 condition: $H_{1,a-1}^1 = 0$ & $H_{2,2a-1}^1 = 0$.

Theorem

If H_+ is satisfied for $X_w \subset X$, then X_w is Schur rigid.

9 $G_w = \text{sym. group of } wX_w = \overline{N_w \cdot o} \text{ and } \mathfrak{g}_w \text{ its Lie algebra.}$

2 $\mathfrak{g}_w^{\perp} =$ complementary root spaces to \mathfrak{g}_w in \mathfrak{g} .

Cohomology group of interest:

$$H^1 = H^1(\mathfrak{n}_w, \mathfrak{g}_w^{\perp}).$$

FACT: \mathfrak{g}_{w}^{\perp} is an \mathfrak{n}_{w} -module: $u \cdot z = [u, z]_{\mathfrak{g}_{w}^{\perp}}$. \therefore Lie alg cohom! Grade H^{1} using Z_{i} and Z_{J} .

$$H_+$$
 condition: $H_{1,a-1}^1 = 0$ & $H_{2,2a-1}^1 = 0$.

Theorem

If H_+ is satisfied for $X_w \subset X$, then X_w is Schur rigid.

Key difficulty: How to evaluate H_+ ? (No Kostant thm if a > 0!)

() $G_w = \text{sym. group of } wX_w = \overline{N_w \cdot o} \text{ and } \mathfrak{g}_w \text{ its Lie algebra.}$

2 $\mathfrak{g}_w^{\perp} =$ complementary root spaces to \mathfrak{g}_w in \mathfrak{g} .

Cohomology group of interest:

$$H^1 = H^1(\mathfrak{n}_w, \mathfrak{g}_w^{\perp}).$$

FACT: \mathfrak{g}_w^{\perp} is an \mathfrak{n}_w -module: $u \cdot z = [u, z]_{\mathfrak{g}_w^{\perp}}$. \therefore Lie alg cohom! Grade H^1 using Z_i and Z_J .

$$H_+$$
 condition: $H_{1,a-1}^1 = 0$ & $H_{2,2a-1}^1 = 0$.

Theorem

If H_+ is satisfied for $X_w \subset X$, then X_w is Schur rigid.

Key difficulty: How to evaluate H_+ ? (No Kostant thm if a > 0!) Key advance: Define Laplacian \Box ($\mathfrak{g}_{0,0}$ -module map), ker $\Box = cohomology$, do spectral analysis. Characterize H_+ in terms of rep.theory.

- Invariance of Schur rigidity under duality is still mysterious.
- Does Schubert rigidity imply Schur rigidity? i.e. is checking $B_w = R_w$ necessary? (No known counterexamples!)
- H₊ is a first-order obstruction to *Schur flexibility*. If H₊ fails, our result is inconclusive. Analyze the EDS further to uncover higher order obstructions.
- If X_w is Schur flexible, classify the representatives of $[X_w]$ (modulo G).