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This talk is about a problem from topology / algebraic geometry
originating in the 1960’s.

Since 1997, substantial progress has been made using differential
geometry, representation theory, and Lie algebra cohomology.
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(Irreducible) CHSS

X = G/Pi : g is C-simple and 1-graded (g = g−1 ⊕ g0 ⊕ g1).

Classical Grassmannians An/Pi = SLn+1C/Pi

Odd-dim. quadrics Bn/P1 = SO2n+1C/P1

Even-dim. quadrics Dn/P1 = SO2nC/P1

Lagrangian Grassmannians Cn/Pn = Sp2nC/Pn

Spinor varieties Dn/Pn = SO2nC/Pn

Exceptional Cayley plane E6/P6

Freudenthal variety E7/P7

Take minimal embedding X ↪→ PVωi to realize X as a projective
algebraic variety.
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Smoothability and Schur rigidity

Theorem (Kostant)

H∗(G/P,Z) is generated by Schubert varieties Xw , w ∈W p.

FACT: Xw are irreducible and most Xw are singular!

Question (Borel–Haefliger 1961):

Can [Xw ] be represented by a smooth complex variety?

Definition

Xw is Schur rigid if for any irred. subvar. Y ⊂ X with [Y ] = r [Xw ]
(∃r ∈ Z), have Y = g · Xw (∃g ∈ G ). Otw, it’s Schur flexible.

(Xw is singular and Schur rigid ⇒ Xw is not smoothable.)

CHSS case: ∃ diff. geo. approach to studying Schur rigidity!
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Examples of Schubert varieties

Example (Smooth and singular Xw in X = G/Pi CHSS)

Smooth:

linear spaces Pk ⊂ X .
sub-Grassmannian, sub-quadric, sub-LG, sub-spinor variety.

Singular:

In Gr(2, 4), Xw = {E ∈ Gr(2, 4) : E ∩ C2 6= 0} has dim 3 and
is smoothable.
In Gr(3, 6), Xw = {E ∈ Gr(3, 6) : E ∩ C2 6= 0} has dim 7 and
is not smoothable. (Hartshorne, Rees, Thomas - 1974; used
topological techniques of Thom)
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Walters (1997) and Bryant (2001)

Theorem

Let X be CHSS. Then [Y ] = r [Xw ] iff Y is an integral variety of a
differential system Rw ⊂ Gr(|w |,TX ), where |w | = dimC Xw .

Proof sketch.

Use dual basis {φv} in cohom: [Y ] = r [Xw ] iff ∀v 6= w , |v | = |w |,

∫
Y
φv = 0

(∗)⇐⇒ φv |Y = 0. (∗) :


Kostant (1963):
φv are “positive”.
(CHSS used here.)

Rw |x := {E ∈ Gr(|w |,TxX ) : φv |E = 0, ∀v 6= w , |v | = |w |}.

Walters and Bryant:
1 smooth Xw in Gr(m, n) and LG(n, 2n)
2 maximal linear spaces in classical CHSS
3 singular Xw of low codim. in Gr(m, n)
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Hong (2005, 2007)

Theorem (Smooth case, 2007)

Let X be CHSS, other than Bn/P1. Any smooth Xw ⊂ X is Schur
rigid except when Xw ⊂ X is a non-maximal Pk or P1 ⊂ Cn/Pn.

(Have exceptions for trivial topological reasons.)

Technique: Vanishing of a certain Lie alg cohom grp implies
rigidity. Used Kostant’s thm.

2005: Found a large class of rigid singular Xw in Gr(m, n).

Question: What about singular Xw in other CHSS?

Key obstruction:

Kostant’s theorem does not apply in the singular cases!
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Summary of new results (2011)

In all CHSS:

1 Key technical lemma: New encoding of Schubert varieties.

2 Uniform approach to smooth and singular cases: If Xw

satisfies H+ (a “first-order obstruction”), then it is Schur rigid.

3 Cohomology: Analogous to Kostant, defined an algebraic
Laplacian; characterized vanishing of cohomology in terms of
representation theory.
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New description of Schubert varieties in CHSS

w ∈W p ←→ nw ⊂ g−1. Stabilizer in g0 of nw is parabolic  
submarking J ⊂ δg\{i}. Let ZJ =

∑
j∈J Zj.

Lemma (Main technical lemma for X = G/Pi CHSS)

Xw is encoded by (a, J), where a ∈ Z≥0, J ⊂ δg\{i}, and

nw = g−1,0 ⊕ ...⊕ g−1,−a.

Moreover, Xw is smooth iff a = 0.

Example (Xw in Gr(3, 6))

↔



∗ ∗ ∗
∗ ∗
∗

−2 −1 0

∗ ∗ ∗

−3 −2 −1

∗ ∗

−3 −2 −1

∗ ∗


⇒ r r r r r@@��

@@@@ @@

a = 1,

(singular)
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Rigidity result for LG(n, 2n)

Theorem

Let Xw ⊂ LG(n, 2n). Let S = J ∪ {n} ⊂ δCn . If

|J| = a : S∗ ⊥ or |J| = a + 1 : S ⊥

then Xw is Schur rigid.

Note: S∗ = do a Dynkin diagram automorphism of S\{n}.

Example (Singular Xw in LG(5, 10))

a = 1, <r r r r r@@ @@ @@�� : Schur rigid, so
non-smoothable

a = 2, <r r r r r@@ @@ @@�� : inconclusive
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Schubert varieties in X 15 = LG(5, 10)
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A posteriori: Our Schur rigid list is invariant under Poincare duality!
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Ideas in the analysis - 1: Schubert rigidity

Let Bw be the P-orbit of nw . Define Bw |gP = g∗Bw . Always have

Bw ⊂ Rw .

Definition

Xw is Schubert rigid if every irreducible integral variety Y of Bw is
of the form Y = g · Xw for some g ∈ G .

Theorem (Bryant, Hong)

Xw is Schur rigid iff Xw is Schubert rigid and Bw = Rw .

Bw = Rw is assessed by comparing tangent spaces.

How to study Schubert rigidity?
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Ideas in the analysis - 2: Lift to a frame bundle

IDEA: Lift Bw to a frame bundle G → X .

o ∈ X ←→ h.w. line [v0] ∈ PV .

Distinguished flag: Cv0 ⊂ Cv0 ⊕ nw · v0 ⊂ Cv0 ⊕ g−1 · v0.

Fix an adapted frame v for V . Take G = {g · v : g ∈ G}.

ϑ : MC form on G. Let n⊥w ⊂ g−1 compl. root spaces to nw .
Schubert system B̃w on G:

ϑn⊥w = 0 + independence condition

Proposition

Int. mflds of B̃w are adapted frame bdles F over int. mflds of Bw .

ϑn⊥w = 0
MC eqn⇒ ϑ0,− = λ(ϑnw ), where λ : F → g0,− ⊗ n∗w .

In fact, λ : F → ker δ1

imδ0
= torsion constraints

frame normalizations . Cohomology!
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Ideas in the analysis - 3: Lie algebra cohomology

1 Gw = sym. group of wXw = Nw · o and gw its Lie algebra.
2 g⊥w = complementary root spaces to gw in g.

Cohomology group of interest:

H1 = H1(nw , g
⊥
w ).

FACT: g⊥w is an nw–module: u · z = [u, z ]g⊥w . ∴ Lie alg cohom!

Grade H1 using Zi and ZJ.

H+ condition: H1
1,a−1 = 0 & H1

2,2a−1 = 0.

Theorem

If H+ is satisfied for Xw ⊂ X , then Xw is Schur rigid.

Key difficulty: How to evaluate H+? (No Kostant thm if a > 0!)
Key advance: Define Laplacian � (g0,0–module map),
ker� = cohomology , do spectral analysis. Characterize H+ in
terms of rep.theory.
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What’s next?

Invariance of Schur rigidity under duality is still mysterious.

Does Schubert rigidity imply Schur rigidity? i.e. is checking
Bw = Rw necessary? (No known counterexamples!)

H+ is a first-order obstruction to Schur flexibility. If H+ fails,
our result is inconclusive. Analyze the EDS further to uncover
higher order obstructions.

If Xw is Schur flexible, classify the representatives of [Xw ]
(modulo G ).
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