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The gap problem

Q:
Among (reg./nor.) parabolic geometries of type (G ,P),

what is the gap between maximal and
submaximal (infinitesimal) symmetry dimensions?

Note: Maximum = dim(G ) (flat model G/P).

Motivation:

Example (Riemannian geometry)

Fubini (1903):
(n+1

2

)
-1 is not possible.

n max submax Citation

2 3 1 Darboux / Koenigs (∼1890)
3 6 4 Wang (1947)
4 10 8 Egorov (1955)

≥ 5
(n+1

2

) (n
2

)
+ 1 Wang (1947), Egorov (1949)
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Sharp gap results for parabolic geometries

1 ≤ 2012:

(i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)
(ii) (2, 3, 5)-distributions (Cartan, 1910)
(iii) n-dim projective (Egorov, 1951)
(iv) scalar 3rd order ODE (Wafo Soh et al., 2002)
(v) pairs of 2nd order ODE (Casey et al., 2012)

2 2013:

(i) any parabolic geometry modelled on complex or split-real
G/P + non-Riem./Lor. conformal (Kruglikov & T.)
Note: We make no additional assumptions such as transitivity,
or curvature type being locally constant, etc.

(ii) Riem./Lor. conformal (Doubrov & T.)
(iii) Metric projective & metric affine (Kruglikov & Matveev)
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Outline of the talk

1 Background

2 Formulation of results

3 Outlines of some proofs
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Background
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Example: Conformal geometry

Flat model:

conf. sphere Sp,q = SOp+1,q+1/P1 = null lines in Rp+1,q+1

sym. dim =
(n+2

2

)
, where n = p + q.

Submax models:

Case Submax Model

p, q ≥ 2
(n−1

2

)
+ 6 y2dw2 + dwdx + dydz + g p−2,q−2

flat

Lorentzian (†)
(n−1

2

)
+ 4 y2dw2 + dwdx + dy2 + dz2 + g0,q

flat

Riemannian (†)
(n−1

2

)
+ 3 Sn−2 × S2 (5 ≤ n 6= 6)

n2

4 + n CPn/2 (n = 4, 6, 8)

(†) : Doubrov–T.
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Example: (2, 3, 5)-distributions

(2, 3, 5)-distributions  G2/P1 geometries (Cartan, 1910).

Goursat: Locally, D is spanned by

∂x + p∂y + q∂p + f ∂z , ∂q.

This is (2, 3, 5) iff f = f (x , y , p, q, z) satisfies fqq 6= 0.

Flat model: f = q2 has 14-dim sym (Hilbert–Cartan eqn);

Submax sym model: f = qm has 7-dim sym when
m 6∈ {−1, 0, 13 ,

2
3 , 1, 2}.
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Parabolic subalgebras and gradings

g : semisimple Lie algebra

(g, p) Z-grading: g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+.

Example (A4/P1,2 and G2/P1)

A4 = sl5 =


0 1 2 2 2

-1 0 1 1 1

-2 -1 0 0 0

-2 -1 0 0 0

-2 -1 0 0 0

 G2 =

Curved versions:

System of three 2nd order ODE (2, 3, 5)-distribution

Dennis The The gap phenomenon in parabolic geometries



Parabolic geometries

For (reg./nor.) G/P geometries (G → M, ω), have harmonic
curvature κH , valued in H2

+(g−, g).

(G → M, ω) is locally flat iff κH = 0 .

Examples (Harmonic curvature)

conformal geometry: Weyl (n ≥ 4) or Cotton (n = 3);

(2, 3, 5)-distributions: binary quartic.

The (locally) flat model is the unique max. sym. model. ∴ Want:

S := max{dim(inf(G, ω)) | κH 6≡ 0} .
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Kostant’s Bott–Borel–Weil theorem

Kostant (1961), Baston–Eastwood (1989): Dynkin diagram
algorithm to calculate H2

+(g−, g) as a g0-module.

Example ((2, 3, 5)-distributions: G2/P1 geometry)

As a g0 = gl2(R) module,

H2
+(g−, g) =

−8 4
=
⊙4

(R2)∗,

i.e. binary quartic, c.f. Cartan (1910) via method of equivalence.
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Tanaka prolongation

Given (g, p), we have g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+. Let a0 ⊂ g0.

Tanaka prolongation of a0 in g:

prg(g−, a0) = g− ⊕ a0 ⊕ a1 ⊕ ...

by

a1 = {X ∈ g1 | [X , g−1] ⊂ a0},
a2 = {X ∈ g2 | [X , g−1] ⊂ a1},

...

Given 0 6= φ ∈ H2
+, interested in a0 = ann(φ). Let

aφ := prg(g−, ann(φ)).
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Formulation of results
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New results (2013)

Fix (G ,P). Among regular, normal G/P geometries (G → M, ω),

S := max{dim(inf(G, ω)) | κH 6≡ 0}
U := max{dim(aφ) | 0 6= φ ∈ H2

+(g−, g)}

Theorem (Universal upper bound)

S ≤ U < dim(g).

Theorem (Local realizability)

If G/P is complex or split-real, then S = U almost always.
Complete exception list when G is simple: A2/P1, A2/P1,2, B2/P1.

Theorem

If G/P is complex or split-real, can read U from a Dynkin diagram!
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Dynkin diagram recipes - 1

1 From g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+, we have g0 = Z(g0)⊕ (g0)ss with{
dim(Z(g0)) = # crosses;
(g0)ss D.D.→ remove crosses.

Since dim(g−) = dim(g+), get n = dim(g/p) and dim(p).

Example (G2/P1)

, dim(g0) = 4, n = 5.
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Dynkin diagram recipes - 2

Let V ⊂ H2
+ be a g0-irrep.

2 dim(ann(φ)) (0 6= φ ∈ V) is max. on l.w. vector φ = φ0 ∈ V,
q := {X ∈ (g0)ss | X · φ0 = λφ0} is parabolic, and

dim(ann(φ0)) = (#crosses)− 1 + dim(q) .

D.D. Notation: If 6= 0 on uncrossed node, put ∗.

Example (G2/P1)

H2
+ =

−8
∗4 , dim(ann(φ0)) = 2.
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Dynkin diagram recipes - 3

Let V ⊂ H2
+ be a g0-irrep.

Lemma

dim(aφ+) (0 6= φ ∈ V) is max. on l.w. vector φ = φ0 ∈ V.

D.D. Notation: If 0 over ×  put �.

3 Remove all ∗ and ×, except � (also remove adj. edges).
Then remove connected components w/o �. Obtain (ḡ, p̄).

Example

0 −5
∗4 0 0 0

 

Proposition

No �⇔ dim(aφ0+ ) = 0. Otw, dim(aφ0+ ) = dim(ḡ/p̄).
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Examples

Example

G/P H2
+ components n dim(aφ0

0 ) dim(aφ0
+ ) dim(aφ0)

G2/P1

−8
∗
4

5 2 0 7

A4/P1,2

0 −4
∗
3
∗
1

7 6 1 14

−4 1
∗
1
∗
1

7 6 0 13

E8/P8
0

0

0 0 0 ∗1 ∗1 −4
57 90 0 147

Proposition (Maximal parabolics)

Single cross ⇒ no �, so aφ0+ = 0.

All complex (g, p) with aφ0+ 6= 0 have been classified. (g simple)
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Outline of some proofs
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Upper bound (S ≤ U) - proof outline

Čap–Neusser (2009):

Fix any u ∈ G. Then ωu : inf(G, ω) ↪→ g (linearly).
Bracket on f = im(ωu) is [X ,Y ]f := [X ,Y ]g − κu(X ,Y ).
Regularity: f is filtered, so s = gr(f) ⊂ g is a graded subalg.
s0 ⊂ ann(κH(u)).

(∗): [si+1, g−1] ⊂ si (i ≥ −1) ⇒ s⊂ prg(g−, s0) ⊂ aκH(u),

so dim(s) ≤ U when κH(u) 6= 0.
BUT: “Tanaka property” (∗) isn’t always true!

Definition

x ∈ M is a regular point iff ∀i , dim(si ) is loc. constant near x.

Proof outline:

(1) Prop: At regular points, (∗) is true.
(2) Lemma: The set of regular points is open and dense in M.
(3) Any nbd of a non-flat point contains a non-flat regular pt.
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Realizability - proof outline

Define f = a := aφ0 as vector spaces, but with deformed bracket

[X ,Y ]f := [X ,Y ]a − φ0(X ,Y ).

(Kostant  explicit l.w. φ0 ∈ V ⊂ H2 ∼= ker(�) ⊂
∧2 g∗− ⊗ g.)

Q: Is this even a Lie algebra? Want φ0 ∈
∧2 g∗− ⊗ a. “Output” of

φ0 is in the w(−λ) root space, w ∈W p(2), λ = h.w. of g.

Proposition

If w(−λ) ∈ ∆− above, then f is a filtered Lie algebra.

Lemma

If g is simple, w ∈W p(2), and w(−λ) ∈ ∆+, then rank(g) = 2.

Non-exceptions: f/f0  non-flat model, dim(f) = U, so S = U.

Have algorithm for constructing an explicit submax. sym. model.
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Conclusion

Summary: Gave a soln to the gap problem for complex or split-real
G/P geometries.

Open questions:

Non-split-real cases, e.g. CR geometry?

Classification of all submaximally symmetric models?

Non-parabolic geometries, e.g. Higher order ODE (systems)?
Kähler geometry?

Dim of submax space of solns of almost-Einstein scales,
Killing tensors, etc. (more generally, of BGG operators)?
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Appendix: At regular points, the Tanaka property holds

Let u ∈ π−1(x), S̃ := inf(G, ω), S̃ j := {ξ ∈ S̃ | ωu(ξ) ∈ gj}, fj := ωu(S̃ j ).

WTS: [fi+1, g−1] ⊂ fi + gi+1, ∀i ≥ −1 .

1 Have tower G = Gν → ...→ G0 → M with Gi = G/P i+1
+

πi−→ M.

Then S̃ projects to S(i) ⊂ X(Gi )
P/P i+1

+ .

x regular pt ⇒ S(i) is constant rank (+ involutive). By
Frobenius, ∃ fcns {Fj} on Gi ; level sets foliate by int. submflds

of S(i). Thus, ξ(i) · Fj = 0, ∀ξ ∈ S̃ i+1.

If ξ ∈ S̃ i+1 and η ∈ Γ(TG)P , then ∀ui ∈ π−1i (x), ξ
(i)
ui = 0 and

[ξ(i), η(i)]ui · Fj = 0 ⇒ [ξ, η]u = ξ′u + χu (∗)

where ξ′ ∈ S̃ and χu ∈ T i+1
u G.

2 Let X = ωu(ξ) ∈ fi+1 and Y = ωu(η) ∈ g−1. Since
[X ,Y ] = −ωu([ξ, η]) ∈ gi , then [X ,Y ] ∈ fi + gi+1 by (∗).
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Appendix 2: Tanaka prolongation

Let V be a g0-irrep.

Lemma (Complex case)

dim(aφ+) (0 6= φ ∈ V) is max. when φ = φ0 ∈ V is a l.w. vector.

Proof.

If gss
0 = 0, then V = C ∴ trivial. So suppose gss

0 6= 0.

1 aφk = prk (g−, ann(φ)) = {X ∈ gk : adk
g−1

(X ) · φ = 0}.
2 If M(φ) depends linearly on φ, then rank(M(φ)) is a lower

semi-cts function.

3 φ 7→ dim(aφk ) is upper semi-cts; it descends to P(V).

4 ∃! closed G0-orbit in P(V). ∴ [φ0] ∈ closure of every G0-orbit.

5 Given 0 6= φ ∈ V, ∃ seq. {gn} in G0 s.t. gn · [φ]→ [φ0].

By upper semi-continuity, dim(aφk ) = dim(agn·φ
k ) ≤ dim(aφ0k ).
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