The gap phenomenon in parabolic geometries

Dennis The

Mathematical Sciences Institute Australian National University

August 2013

(Joint work with Boris Kruglikov) Differential Geometry and its Applications

Among (reg./nor.) parabolic geometries of type (G, P), what is the gap between maximal and submaximal (infinitesimal) symmetry dimensions?

Note: Maximum = dim(G) (flat model G/P).

Motivation:

Q:

Example (Riemannian geometry)

• Fubini (1903): $\binom{n+1}{2}$ -1 is not possible.

n	max	submax	Citation			
2	3	1	Darboux / Koenigs (\sim 1890)			
3	6	4	Wang (1947)			
4	10	8	Egorov (1955)			
\geq 5	$\binom{n+1}{2}$	$\binom{n}{2} + 1$	Wang (1947), Egorov (1949)			

Sharp gap results for parabolic geometries

$\bullet \leq 2012:$

- (i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)
- (ii) (2,3,5)-distributions (Cartan, 1910)
- (iii) *n*-dim projective (Egorov, 1951)
- (iv) scalar 3rd order ODE (Wafo Soh et al., 2002)
- (v) pairs of 2nd order ODE (Casey et al., 2012)
- 2013:
 - $({\sf i})$ any parabolic geometry modelled on complex or split-real
 - G/P + non-Riem./Lor. conformal (Kruglikov & T.)
 - Note: We make no additional assumptions such as transitivity, or curvature type being locally constant, etc.
 - (ii) Riem./Lor. conformal (Doubrov & T.)
 - (iii) Metric projective & metric affine (Kruglikov & Matveev)

- Background
- ② Formulation of results
- Outlines of some proofs

Background

Flat model:

• conf. sphere $\mathbb{S}^{p,q} = SO_{p+1,q+1}/P_1 =$ null lines in $\mathbb{R}^{p+1,q+1}$

• sym. dim =
$$\binom{n+2}{2}$$
, where $n = p + q$.

Submax models:

Case	Submax	Model		
$p,q \geq 2$	$\binom{n-1}{2} + 6$	$y^2 dw^2 + dw dx + dy dz + g_{flat}^{p-2,q-2}$		
Lorentzian (†)	$\binom{n-1}{2} + 4$	$\int y^2 dw^2 + dw dx + dy^2 + dz^2 + g_{flat}^{0,q}$		
Riemannian (†)	$\binom{n-1}{2} + 3$	$\mathbb{S}^{n-2} imes \mathbb{S}^2 \ (5\leq n eq 6)$		
	$\frac{n^2}{4} + n$	$\mathbb{CP}^{n/2}$ $(n = 4, 6, 8)$		

(†) : Doubrov–T.

(2,3,5)-distributions $\rightsquigarrow G_2/P_1$ geometries (Cartan, 1910). Goursat: Locally, D is spanned by

$$\partial_x + p\partial_y + q\partial_p + f\partial_z, \qquad \partial_q.$$

This is (2,3,5) iff f = f(x, y, p, q, z) satisfies $f_{qq} \neq 0$.

- Flat model: $f = q^2$ has 14-dim sym (Hilbert-Cartan eqn);
- Submax sym model: $f = q^m$ has 7-dim sym when $m \notin \{-1, 0, \frac{1}{3}, \frac{2}{3}, 1, 2\}.$

Parabolic subalgebras and gradings

 \mathfrak{g} : semisimple Lie algebra

$$\mathfrak{g},\mathfrak{p})\rightsquigarrow\mathbb{Z} ext{-grading:}\quad \mathfrak{g}=\mathfrak{g}_{-}\oplus \widetilde{\mathfrak{g}_{0}\oplus\mathfrak{g}_{+}}.$$

Example $(A_4/P_{1,2} \text{ and } G_2/P_1)$

'n

Curved versions:

System of three 2nd order ODE

(2,3,5)-distribution

For (reg./nor.) G/P geometries ($\mathcal{G} \to M, \omega$), have harmonic curvature κ_H , valued in $H^2_+(\mathfrak{g}_-, \mathfrak{g})$.

$$(\mathcal{G} \to M, \omega)$$
 is locally flat iff $\kappa_H = 0$.

Examples (Harmonic curvature)

- conformal geometry: Weyl $(n \ge 4)$ or Cotton (n = 3);
- (2,3,5)-distributions: binary quartic.

The (locally) flat model is the unique max. sym. model. ∴ Want:

 $\mathfrak{S} := \max\{\dim(\mathfrak{inf}(\mathcal{G},\omega)) \mid \kappa_H \neq 0\}.$

Kostant (1961), Baston–Eastwood (1989): Dynkin diagram algorithm to calculate $H^2_+(\mathfrak{g}_-,\mathfrak{g})$ as a \mathfrak{g}_0 -module.

Example ((2,3,5)-distributions: G_2/P_1 geometry)

As a $\mathfrak{g}_0=\mathfrak{gl}_2(\mathbb{R})$ module,

$$H^2_+(\mathfrak{g}_-,\mathfrak{g})=\overset{-8}{
integral}\overset{4}{=}=\bigodot^4(\mathbb{R}^2)^*,$$

i.e. binary quartic, c.f. Cartan (1910) via method of equivalence.

Tanaka prolongation

Given
$$(\mathfrak{g},\mathfrak{p})$$
, we have $\mathfrak{g} = \mathfrak{g}_{-} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}^{\mathfrak{p}}$. Let $\mathfrak{a}_{0} \subset \mathfrak{g}_{0}$.

Tanaka prolongation of \mathfrak{a}_0 in \mathfrak{g} :

$$\mathsf{pr}_\mathfrak{g}(\mathfrak{g}_-,\mathfrak{a}_0) = \mathfrak{g}_- \oplus \mathfrak{a}_0 \oplus \mathfrak{a}_1 \oplus ...$$

by

$$\begin{aligned} \mathfrak{a}_1 &= \{ X \in \mathfrak{g}_1 \mid [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_0 \}, \\ \mathfrak{a}_2 &= \{ X \in \mathfrak{g}_2 \mid [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_1 \}, \end{aligned}$$

Given $0 \neq \phi \in H^2_+$, interested in $\mathfrak{a}_0 = \mathfrak{ann}(\phi)$. Let

÷

$$\mathfrak{a}^{\phi} := \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_{-}, \mathfrak{ann}(\phi)).$$

Formulation of results

New results (2013)

Fix (G, P). Among regular, normal G/P geometries $(\mathcal{G} \to M, \omega)$,

$$\mathfrak{S} := \max\{\dim(\mathfrak{inf}(\mathcal{G},\omega)) \mid \kappa_H \not\equiv 0\}$$

 $\mathfrak{U} := \max\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in H^2_+(\mathfrak{g}_-,\mathfrak{g})\}$

Theorem (Universal upper bound)

 $\mathfrak{S} \leq \mathfrak{U} < \dim(\mathfrak{g}).$

Theorem (Local realizability)

If G/P is complex or split-real, then $\mathfrak{S} = \mathfrak{U}$ almost always. Complete exception list when G is simple: A_2/P_1 , $A_2/P_{1,2}$, B_2/P_1 .

Theorem

If G/P is complex or split-real, can read \mathfrak{U} from a Dynkin diagram!

• From
$$\mathfrak{g} = \mathfrak{g}_{-} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}^{\mathfrak{p}}$$
, we have $\mathfrak{g}_{0} = \mathcal{Z}(\mathfrak{g}_{0}) \oplus (\mathfrak{g}_{0})_{ss}$ with

 $\begin{cases} \dim(\mathcal{Z}(\mathfrak{g}_0)) = \# \text{ crosses;} \\ (\mathfrak{g}_0)_{ss} \text{ D.D.} \to \text{ remove crosses.} \end{cases}$

Since $\dim(\mathfrak{g}_{-}) = \dim(\mathfrak{g}_{+})$, get $n = \dim(\mathfrak{g}/\mathfrak{p})$ and $\dim(\mathfrak{p})$.

Example (G_2/P_1)

$$\times$$
 , dim $(\mathfrak{g}_0) = 4$, $n = 5$.

Dynkin diagram recipes - 2

Let $\mathbb{V} \subset H^2_+$ be a \mathfrak{g}_0 -irrep.

② dim(ann(ϕ)) (0 ≠ $\phi \in \mathbb{V}$) is max. on l.w. vector $\phi = \phi_0 \in \mathbb{V}$, $\mathfrak{q} := \{X \in (\mathfrak{g}_0)_{ss} \mid X \cdot \phi_0 = \lambda \phi_0\}$ is parabolic, and

 $\dim(\mathfrak{ann}(\phi_0)) = (\# crosses) - 1 + \dim(\mathfrak{q}).$

D.D. Notation: If $\neq 0$ on uncrossed node, put *.

Example (G_2/P_1)

$$H^2_+ = \overset{-8}{\swarrow} \overset{4}{\longleftarrow}$$
, dim(ann(ϕ_0)) = 2.

Dynkin diagram recipes - 3

Let $\mathbb{V} \subset H^2_+$ be a \mathfrak{g}_0 -irrep.

Lemma

 $\dim(\mathfrak{a}^{\phi}_{+}) \ (\mathbf{0} \neq \phi \in \mathbb{V})$ is max. on l.w. vector $\phi = \phi_{\mathbf{0}} \in \mathbb{V}$.

D.D. Notation: If 0 over $\times \rightsquigarrow$ put \Box .

Semove all * and ×, except □ (also remove adj. edges). Then remove connected components w/o □. Obtain (ḡ, p̄).

Example

G/P	H_{+}^2 components	n	$\dim(\mathfrak{a}_0^{\phi_0})$	$\dim(\mathfrak{a}_+^{\phi_0})$	$\dim(\mathfrak{a}^{\phi_0})$
G_2/P_1	-8 4	5	2	0	7
$A_4/P_{1,2}$	$ \overset{0 -4 3 1}{\overleftarrow{}} \overset{}{\overleftarrow{}} \overset{}{\overleftarrow{}}} \overset{}{\overleftarrow{}} \overset{}{\overleftarrow{}} \overset{}{\overleftarrow{}} \overset{}{\overleftarrow{}} \overset{}}{\overleftarrow{}} \overset{}{\overleftarrow{}} \overset{}}{\overleftarrow{}} \overset{}{\overleftarrow{}} \overset{}}{\overleftarrow{}} \overset{}{\overleftarrow{}} \overset{}}{\overleftarrow{}} \overset{}} \overset{}}{\overleftarrow{}} \overset{}}{\overleftarrow{}} \overset{}}{\overleftarrow{}} \overset{}}{\overleftarrow{}} \overset{}}{\overleftarrow{}} \overset{}}{\overleftarrow{}} \overset{}}$	7	6	1	14
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	6	0	13
E_{8}/P_{8}	$\begin{array}{c} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 1 & -4 \\ \hline 0 & 0 & & & & \\ \end{array}$	57	90	0	147
	, i i i i i i i i i i i i i i i i i i i	1			

Proposition (Maximal parabolics)

Single cross \Rightarrow no \Box , so $\mathfrak{a}^{\phi_0}_+ = 0$.

All complex $(\mathfrak{g},\mathfrak{p})$ with $\mathfrak{a}_+^{\phi_0} \neq 0$ have been classified. (\mathfrak{g} simple)

Outline of some proofs

Upper bound ($\mathfrak{S} \leq \mathfrak{U}$) - proof outline

Čap-Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

$$\begin{array}{l} (*): \quad [\mathfrak{s}_{i+1}, \mathfrak{g}_{-1}] \subset \mathfrak{s}_i \\ \text{so } \dim(\mathfrak{s}) \leq \mathfrak{U} \text{ when } \kappa_H(u) \neq 0. \\ \text{BUT: "Tanaka property" (*) isn't always true!} \end{array}$$

Definition

 $x \in M$ is a regular point iff $\forall i$, dim (\mathfrak{s}_i) is loc. constant near x.

Proof outline:

(1) Prop: At regular points, (*) is true.

(2) Lemma: The set of regular points is open and dense in M.

(3) Any nbd of a non-flat point contains a non-flat regular pt.

Realizability - proof outline

Define $\mathfrak{f} = \mathfrak{a} := \mathfrak{a}^{\phi_0}$ as vector spaces, but with deformed bracket

$$[X,Y]_{\mathfrak{f}} := [X,Y]_{\mathfrak{a}} - \phi_0(X,Y).$$

(Kostant \rightsquigarrow *explicit* I.w. $\phi_0 \in \mathbb{V} \subset H^2 \cong \ker(\Box) \subset \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{g}$.)

Q: Is this even a Lie algebra? Want $\phi_0 \in \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{a}$. "Output" of ϕ_0 is in the $w(-\lambda)$ root space, $w \in W^{\mathfrak{p}}(2)$, $\lambda = h.w.$ of \mathfrak{g} .

Proposition

If $w(-\lambda) \in \Delta^-$ above, then \mathfrak{f} is a filtered Lie algebra.

Lemma

If
$$\mathfrak{g}$$
 is simple, $w \in W^{\mathfrak{p}}(2)$, and $w(-\lambda) \in \Delta^+$, then $\operatorname{rank}(\mathfrak{g}) = 2$.

Non-exceptions: $f/f^0 \rightsquigarrow$ non-flat model, $\dim(f) = \mathfrak{U}$, so $\mathfrak{S} = \mathfrak{U}$.

Have algorithm for constructing an explicit submax. sym. model.

Summary: Gave a soln to the gap problem for complex or split-real G/P geometries.

Open questions:

- Non-split-real cases, e.g. CR geometry?
- Classification of all submaximally symmetric models?
- Non-parabolic geometries, e.g. Higher order ODE (systems)? Kähler geometry?
- Dim of submax space of solns of almost-Einstein scales, Killing tensors, etc. (more generally, of BGG operators)?

Appendix: At regular points, the Tanaka property holds

Let
$$u \in \pi^{-1}(x)$$
, $\widetilde{S} := \inf(\mathcal{G}, \omega)$, $\widetilde{S}^j := \{\xi \in \widetilde{S} \mid \omega_u(\xi) \in \mathfrak{g}^j\}$, $\mathfrak{f}^j := \omega_u(\widetilde{S}^j)$.

WTS:
$$[\mathfrak{f}^{i+1},\mathfrak{g}^{-1}] \subset \mathfrak{f}^i + \mathfrak{g}^{i+1}, \quad \forall i \geq -1$$

• Have tower $\mathcal{G} = \mathcal{G}_{\nu} \to ... \to \mathcal{G}_{0} \to M$ with $\mathcal{G}_{i} = \mathcal{G}/P_{+}^{i+1} \xrightarrow{\pi_{i}} M$. Then $\widetilde{\mathcal{S}}$ projects to $\mathcal{S}^{(i)} \subset \mathfrak{X}(\mathcal{G}_{i})^{P/P_{+}^{i+1}}$.

 x regular pt ⇒ S⁽ⁱ⁾ is constant rank (+ involutive). By Frobenius, ∃ fcns {F_j} on G_i; level sets foliate by int. submflds of S⁽ⁱ⁾. Thus, ξ⁽ⁱ⁾ · F_j = 0, ∀ξ ∈ S̃ⁱ⁺¹.

• If $\xi \in \widetilde{\mathcal{S}}^{i+1}$ and $\eta \in \Gamma(\mathcal{TG})^P$, then $\forall u_i \in \pi_i^{-1}(x)$, $\xi_{u_i}^{(i)} = 0$ and

$$[\xi^{(i)},\eta^{(i)}]_{u_i}\cdot F_j = 0 \quad \Rightarrow \quad [\xi,\eta]_u = \xi'_u + \chi_u \qquad (*)$$

where $\xi' \in \widetilde{\mathcal{S}}$ and $\chi_u \in T_u^{i+1}\mathcal{G}$.

2 Let $X = \omega_u(\xi) \in \mathfrak{f}^{i+1}$ and $Y = \omega_u(\eta) \in \mathfrak{g}^{-1}$. Since $[X, Y] = -\omega_u([\xi, \eta]) \in \mathfrak{g}^i$, then $[X, Y] \in \mathfrak{f}^i + \mathfrak{g}^{i+1}$ by (*).

Appendix 2: Tanaka prolongation

Let $\mathbb V$ be a $\mathfrak g_0\text{-}\mathsf{irrep}.$

Lemma (Complex case)

 $\dim(\mathfrak{a}^{\phi}_{+}) \ (0 \neq \phi \in \mathbb{V})$ is max. when $\phi = \phi_0 \in \mathbb{V}$ is a l.w. vector.

Proof.

If $\mathfrak{g}_0^{ss} = 0$, then $\mathbb{V} = \mathbb{C}$. trivial. So suppose $\mathfrak{g}_0^{ss} \neq 0$.

$$a_k^{\phi} = pr_k(\mathfrak{g}_-, \mathfrak{ann}(\phi)) = \{ X \in \mathfrak{g}_k : \mathrm{ad}_{\mathfrak{g}_{-1}}^k(X) \cdot \phi = 0 \}.$$

- **2** If $M(\phi)$ depends linearly on ϕ , then $rank(M(\phi))$ is a lower semi-cts function.
- $\phi \mapsto \dim(\mathfrak{a}_k^{\phi})$ is upper semi-cts; it descends to $\mathbb{P}(\mathbb{V})$.
- **③** ∃! closed G_0 -orbit in $\mathbb{P}(\mathbb{V})$. ∴ $[\phi_0] \in$ closure of *every* G_0 -orbit.
- **5** Given $0 \neq \phi \in \mathbb{V}$, \exists seq. $\{g_n\}$ in G_0 s.t. $g_n \cdot [\phi] \rightarrow [\phi_0]$.

By upper semi-continuity, $\dim(\mathfrak{a}_k^{\phi}) = \dim(\mathfrak{a}_k^{g_n \cdot \phi}) \leq \dim(\mathfrak{a}_k^{\phi_0}).$