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Regularity of potential functions

of the optimal transportation problem

Xi-Nan Ma, Neil S. Trudinger, Xu-Jia Wang

Abstract

The potential function to the optimal transportation problem satisfies a partial differential
equation of Monge-Ampère type. In this paper we introduce the notion of generalized solution,
and prove the existence and uniqueness of generalized solutions to the problem. We also prove the
solution is smooth under certain structural conditions on the cost function.

1. Introduction

The optimal transportation problem, as proposed by Monge in 1781 [22], is to find an optimal
mapping from one mass distribution to another such that a cost functional is minimized among all
measure preserving mappings. The original cost function of Monge was proportional to the distance
moved and surprisingly this problem was only recently completely solved [9,29], see also [2]. When
the cost function is strictly convex, it was proved [6,15] that a unique optimal mapping can be
determined by the potential functions, which are maximizers of Kantorovich’s dual functional.

The potential function satisfies a fully nonlinear equation of Monge-Ampère type, subject to a
natural boundary condition. When the cost function c is given by c(x, y) = |x−y|2, or equivalently
c(x, y) = x · y, the equation can be reduced to the standard Monge-Ampère equation

det D2u = h(·, Du), (1.1)

and the regularity of solutions was obtained in [7,8,30], and earlier in [12] in dimension 2. See also
§7.1 below. In this paper we study the regularity of potential functions for general cost functions.
We establish an a priori interior second order derivative estimate for solutions to the corresponding
Monge-Ampère equation when the cost function satisfies an additional structural condition, namely
the assumption (A3) in Section 2. Although condition (A3) depends upon derivatives up to order
four of the cost function, it is the natural condition for interior regularity of the associated Monge-
Ampère type equation. Moreover we do not expect the interior regularity without this or a similar
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condition. To apply the a priori estimate to the potential functions we introduce and develop the
notion of generalized solution and prove that a potential function is indeed a generalized solution.
The regularity of potential functions then follows by showing that a generalized solution can be
approximated locally by smooth ones.

In Section 2 we introduce Kantorovich’s dual functional and deduce the Monge-Ampère type
equation satisfied by the potential function. We then introduce the appropriate convexity notions
relative to the cost function and state the main regularity result of the paper (Theorem 2.1). In
Section 3 we introduce the generalized solution and show that a generalized solution is a potential
function to the optimal transportation problem, from which follows the existence and uniqueness of
generalized solutions (Theorem 3.1). In Section 4 we establish the a priori second order derivative
estimates (Theorem 4.1) under assumption (A3). In Section 5 we prove that a generalized solution
can be approximated locally by smooth solutions and so complete the proof of Theorem 2.1.

In Section 6 we verify the assumption (A3). We show that (A3) is satisfied by the two important
cost functions [5], c(x, y) =

√
1− |x− y|2 and c(x, y) =

√
1 + |x− y|2; and more generally by the

cost function

c(x, y) = (ε + |x− y|2)p/2 (1.2)

for 1 ≤ p < 2, where ε > 0 is a constant. We also consider the cost function

c(x, y) = |X − Y |2, (1.3)

which is a function of the distance between points on graphs, where X = (x, f(x)) and Y = (y, g(y))
are points of the graphs of f and g. We show that condition (A3) is satisfied if f and g are
uniformly convex or concave and their gradients are strictly less than one. The final Section 7
contains various remarks. First in §7.1 we indicate a simpler proof for the existence and interior
regularity of solutions to equation (1.1) subject to the second boundary condition. We then recall
in §7.2 the reflector antenna design problem treated in [32,33], which is an optimal transportation
problem with cost function satisfying assumption (A3). In §7.3 we show that a potential function
may not be smooth if the target domain is not convex relative to the cost function, while in §7.4
we provide conditions ensuring the convexity property for our examples in §6. We conclude in §7.5
with further remarks pertaining to the scope of our conditions.

Our treatment of c-concavity builds upon that in [16] for strictly convex cost functions and in
[32] for the reflector antenna problem. We are very grateful to Robert McCann for useful discussions
about this and other aspects of this paper.

2. Potential functions

Let Ω, Ω∗ be two bounded domains in the Euclidean space Rn, and let f, g be two nonnegative
functions defined on Ω and Ω∗, and satisfying

∫

Ω

f =
∫

Ω∗
g. (2.1)
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Let c be a C4 smooth function defined on Rn×Rn. The optimal transportation problem concerns
the existence of a measure preserving mapping s0 : Ω → Ω∗ which minimizes the cost functional

C(s) =
∫

Ω

f(x)c(x, s(x)) dx (2.2)

among all measure preserving mappings from Ω to Ω∗. A map s is called measure preserving if it
is Borel measurable and for any Borel set E ∈ Ω∗,

∫

s−1(E)

f =
∫

E

g. (2.3)

The above condition is equivalent to that for any continuous function h ∈ C(Ω∗),
∫

Ω

h(s(x))f(x) dx =
∫

Ω∗
h(y)g(y) dy.

To study the existence of optimal mappings to the minimization problem, Kantorovich introduced
the dual functional

I(ϕ,ψ) =
∫

Ω

f(x)ϕ(x)dx +
∫

Ω∗
g(y)ψ(y)dy, (ϕ,ψ) ∈ K, (2.4)

where

K = {(ϕ,ψ) | ϕ(x) + ψ(y) ≤ c(x, y), x ∈ Ω, y ∈ Ω∗}. (2.5)

A fundamental relation between the cost functional C and its dual functional I is the following

inf
s∈S

C(s) = sup
(ϕ,ψ)∈K

I(ϕ,ψ). (2.6)

It is readily shown (under appropriate conditions) that the maximizer to the right hand side always
exists, and is unique up to a constant [6,15]. Let (u, v) ∈ K be a maximizer. The component
functions u and v are called the potential functions of the optimal transportation problem. In this
paper we study their regularity.

We assume the following conditions:
(A1) For any x, z ∈ Rn, there is a unique y ∈ Rn, depending continuously on x, z, such that
Dxc(x, y) = z, and for any y, z ∈ Rn, there is a unique x ∈ Rn, depending continuously on y, z,
such that Dyc(x, y) = z.
(A2) For any x, y ∈ Rn,

detD2
xyc 6= 0,

where D2
xyc is the matrix whose element at the ith row and jth column is ∂2c(x,y)

∂xi∂yj
.

(A3) There exists a constant c0 > 0 such that for any x ∈ Ω, y ∈ Ω∗, and ξ, η ∈ Rn, ξ ⊥ η,
∑

i,j,k,l,p,q,r,s

(cp,qcij,pcq,rs − cij,rs)cr,kcs,lξiξjηkηl ≥ c0|ξ|2|η|2,

where ci,j(x, y) = ∂2c(x,y)
∂xi∂yj

, and (ci,j) is the inverse matrix of (ci,j).
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Assumption (A3) will be used in the proof of the regularity of u. For the regularity of v we
assume instead ∑

(cp,qcrs,pcq,ij − crs,ij)ck,rcl,sξiξjηkηl ≥ c0|ξ|2|η|2.
In Section 4 we will show that assumption (A3) can be replaced by a slightly different one, see
(4.21).

From the proofs in [6,15], the existence and uniqueness, up to constants, of maximizers to
(2.4) is readily inferred under conditions (A1) (A2), (although one should note that the stated
hypotheses in these papers is stronger). Let (u, v) be the potential functions. It is easy to verify
the relation [15],

u(x) = inf
y∈Ω∗

{c(x, y)− v(y)},
v(y) = inf

x∈Ω
{c(x, y)− u(x)}. (2.7)

It follows that u, v are Lipschitz continuous, and their Lipschitz constants are controlled by that
of c. For any given x0 ∈ Ω, let y0 ∈ Ω∗ such that

u(x0) = c(x0, y0)− v(y0), (2.8)
u(x) ≤ c(x, y0)− v(y0) ∀ x ∈ Ω. (2.9)

Then we have, provided Du and D2u exist at x0,

Du(x0) = Dxc(x0, y0), (2.10)
D2u(x0) ≤ D2

xc(x0, y0). (2.11)

By assumption (A1) and (2.10), we obtain a mapping Tu, Tu(x0) = y0, such that for almost all
x ∈ Ω,

Du(x) = Dxc(x, Tu(x)). (2.12)

Similarly there is a mapping Tv such that for almost all y ∈ Ω∗,

Dv(y) = Dyc(Tv(y), y).

From the proof in [6,15], the mapping Tu is indeed measure preserving, and is optimal for the
transportation problem (2.2). From (2.8) we have Tu(x) = y if and only if Tv(y) = x. Hence Tv is
the inverse of Tu. From (2.11) we see that if u is C2 smooth, then

D2u(x) ≤ D2
xc(x, Tu(x)) ∀ x ∈ Ω, (2.13)

where D2
xc is the Hessian matrix of c with respect to the x-variable. Similarly if v is C2 smooth,

we have
D2v(y) ≤ D2

yc(Tv(y), y) ∀ y ∈ Ω∗.

Next we introduce some convexity notions relative to the cost function c. These notions coincide
with the classical ones when

c(x, y) = x · y. (2.14)

First we introduce the c-concavity of functions; see also [16].
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Definition 2.1. An upper semi-continuous function φ defined on Ω is c-concave if for any point
x0 ∈ Ω, there exists a c-support function at x0. Similarly, an upper semi-continuous function ψ
defined on Ω∗ is c∗-concave if for any point y0 ∈ Ω∗, there exists a c∗-support function at y0.

A c-support function of ϕ at x0 is a function of the form a + c(x, y0), where y0 ∈ Rn and
a = a(x0, y0) is a constant, such that

ϕ(x0) = c(x0, y0) + a,

ϕ(x) ≤ c(x, y0) + a ∀ x ∈ Ω. (2.15)

Similarly one can define c∗-support functions by switching x and y, Ω and Ω∗. One can also
introduce the notion of c-convex functions by changing the direction of the inequality in (2.15).

As the cost function c is smooth, any c-concave function ϕ is semi-concave, namely there exists
a constant C such that ϕ(x) − C|x|2 is concave. It follows that a c-concave function is locally
Lipschitz continuous in Ω and twice differentiable almost everywhere. If ϕ is twice differentiable
at x0, then Tϕ is well defined at x0 and one has D2ϕ(x) ≤ D2

xc(x, Tϕ(x)) at x0. It is easy to show
that if (ϕk) is a sequence of c-concave functions and ϕk → ϕ, then ϕ is c-concave.

In the special case when c(x, y) = x·y, the notion of c-concavity coincides with that of concavity,
and the graph of a c-support function is a support hyperplane.

Obviously the potential function u is c-concave and v is c∗-concave. Next we derive the equation
satisfied by (u, v). From (2.12) we have

D2u(x) = D2
xc(x, T (x)) + D2

xyc ·DT. (2.16)

Hence

det(D2
xc−D2u) = det(−D2

xyc) det DT

= |det(D2
xyc)| f(x)

g(T (x))
x ∈ Ω. (2.17)

Note that det DT could be negative and by (2.13), the matrix (D2
xc−D2u) is non-negative. Hence

(2.17) is degenerate elliptic if u is c-concave. For the optimal transportation problem we have the
natural boundary condition

Tu(Ω) = Ω∗. (2.18)

For the potential function v, we have,

D2v = D2
yc + D2

xyc ·DTv. (2.19)

Hence v satisfies the equation

det(D2
yc−D2v) = | detD2

xyc| · g(y)
f(Tv(y))

y ∈ Ω∗. (2.20)

The corresponding boundary condition is

Tv(Ω∗) = Ω. (2.21)
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We remark that equations (2.17) and (2.20) can also be found in [31], and the notion of c-concavity
is already in the literature; see for example, [16].

Equations (2.17) and (2.20) are of Monge-Ampère type. If c(x, y) = x · y, then Tu(x) = Du(x)
and (2.17) is equivalent to the standard Monge-Ampère equation

detD2u = h, (2.22)

with the boundary condition

Du(Ω) = Ω∗, (2.23)

where h = g/f . As remarked earlier, the regularity for the second boundary problem (2.22) (2.23),
as originally proposed in [20], was established in [7,8,12,30].

To study the regularity of equation (2.17), we not only need the c-convexity of functions, but
also the convexity of domains, as in the case for the standard Monge-Ampère equation (2.22).
First we introduce a notion of c-segments, which plays a similar role as line segments for the
Monge-Ampère equation.

Definition 2.2. A c-segment in Ω with respect to a point y is a solution set {x} to Dyc(x, y) = z
for z on a line segment in Rn. A c∗-segment in Ω∗ with respect to a point x is a solution set {y}
to Dxc(x, y) = z for z on a line segment in Rn.

By assumptions (A1) and (A2), it is easy to check that a c-segment is a smooth curve, and for
any two points x0, x1 ∈ Rn and any y ∈ Rn, there is a unique c-segment connecting x0 and x1

relative to y.

Let h(x) = c(x, y0)+a be a c-support function. Then Th(x) = y0 for any x ∈ Ω, namely Th maps
all points x ∈ Ω to the same point y0. Hence we may regard y0 as the “focus” of h. Geometrically
a c∗-segment relative to x0 is the set of foci of a family of c-support functions whose gradients at
x0 lie in a line segment. When c(x, y) = x · y, a c-support function is a hyperplane and the “focus”
of a hyperplane is its slope. In this case a c-segment connecting x0 and x1 is the Euclidean line
segment, and the c-convexity of domains introduced below is equivalent to convexity.

Definition 2.3. A set E is c-convex relative to a set E∗ if for any two points x0, x1 ∈ E and
any y ∈ E∗, the c-segment relative to y connecting x0 and x1 lies in E. Similarly we say E∗ is
c∗-convex relative to E if for any two points y0, y1 ∈ E∗ and any x ∈ E, the c∗-segment relative to
x connecting y0 and y1 lies in E∗.

The notion of c-convexity is not equivalent to convexity in the usual sense, rather it is stronger
in general. For example, a ball may not be c-convex (relative to another given domain) at arbitrary
location. On the other hand, a sufficiently small ball will be c-convex if c is C3 smooth. Another
way of expressing Definition 2.3 is that E is c-convex with respect to E∗ if for each y ∈ E∗, the
image Dyc(·, y)(E) is convex in Rn and E∗ is c∗-convex with respect to E if for each x ∈ E,
Dxc(x, ·)(E∗) is convex in Rn. We will examine this notion further in §7.4 in the light of our
examples in Section 6.

We can now state the main regularity result of the paper.
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Theorem 2.1. Suppose f ∈ C2(Ω), g ∈ C2(Ω∗), f, g have positive upper and lower bounds, and
(2.1) holds. Suppose the cost function c satisfies assumptions (A1)-(A3). Then if the domain Ω∗

is c∗-convex relative to Ω, the potential function u is C3 smooth in Ω. If Ω is c-convex relative to
Ω∗, the potential function v is C3 smooth in Ω∗.

We have not studied the regularity near the boundary. In the special case c(x, y) = x · y, it has
been established in [8,12,30]. We also point out that if Ω∗ is not c∗-convex (relative to Ω), the
regularity assertion of Theorem 2.1 does not hold in general, see §7.3.

Remark 2.1. Instead of maximizers of Kantorovich’s functional, one can also consider minimizers,
namely functions (u, v) satisfying

I(u, v) = inf
(ϕ,ψ)∈K∗

I(ϕ, ψ), (2.24)

where
K∗ = {(ϕ,ψ) | ϕ(x) + ψ(y) ≥ c(x, y), x ∈ Ω, y ∈ Ω∗}.

The existence of minimizers to (2.24) can also be proved along the line of [6,15]. In this paper we
will study maximizers only, but the treatment in the paper also holds for minimizers. In particular
Theorem 2.1 holds for minimizers if assumption (A3) is replaced by
(A3′) There exists a constant c0 > 0 such that for any x ∈ Ω, y ∈ Ω

∗
, and ξ, η ∈ Rn, ξ ⊥ η,

∑

i,j,k,l,p,q,r,s

(cp,qcij,pcq,rs − cij,rs)cr,kcs,lξiξjηkηl ≤ −c0|ξ|2|η|2,

Note that (A3) and (A3′) cannot hold simultaneously.

3. Generalized solutions

Let ϕ be a c-concave function in Ω. We define a set-valued mapping Tϕ : Ω → Rn, which is
an extension of the normal mapping (super-gradient) for concave functions [24]. For any x0 ∈ Ω,
let Tϕ(x0) denote the set of points y0 such that c(x, y0) + a is a c-support function of ϕ at x0 for
some constant a = a(x0, y0). For any subset E ⊂ Ω, we denote Tϕ(E) =

⋃
x∈E Tϕ(x).

If ϕ is C1 smooth, then Tϕ is single valued, and is exactly the mapping given by (2.12). In
general, Tϕ(x) is single valued for almost all x ∈ Ω as ϕ is semi-concave and so twice differentiable
almost everywhere. If c(x, y) = x · y, Tϕ is the normal mapping for concave functions. In this
paper we call the mapping Tϕ the c-normal mapping of ϕ. Similarly one can define the c∗-normal
mapping for c∗-concave functions.

Remark 3.1. Since a c-concave function ϕ is semi-concave, its super-gradient

∂+ϕ(x0) = {p ∈ Rn | u(x) ≤ u(x0) + p · x + o(|x− x0|)}
is defined everywhere. By (2.12), we see that if y ∈ Tϕ(x0), then Dxc(x0, y) ∈ ∂+ϕ(x0). However
if ϕ is not C1 at some point x0, the relation

Tϕ(x0) = {y ∈ Rn | Dxc(x0, y) ∈ ∂+ϕ(x0)}
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does not hold in general, where c(x, y) + a (for some constant a) is a c-support function of ϕ at
x0. Moreover, the set

E = {x ∈ Rn | ϕ(x) = c(x, y) + a}
may be disconnected. See §7.5 for further discussion.

By the c-normal mapping we can introduce a measure µ = µϕ,g in Ω, where g ∈ L1(Rn) is a
nonnegative measurable function, such that for any Borel set E ⊂ Ω,

µ(E) =
∫

Tϕ(E)

g(x)dx. (3.1)

To prove that µ is a Radon measure, we need to show that µ is countably additive. We will use
the following generalized Legendre transform.

Definition 3.1. Let ϕ be an upper semi-continuous function defined on Ω. The c-transform of ϕ
is a function ϕ∗ defined on Rn, given by

ϕ∗(y) = inf{c(x, y)− ϕ(x) | x ∈ Ω}. (3.2)

Similarly for an upper semi-continuous function ψ defined on Ω∗, the c∗-transform of ψ is the
function

ψ∗(x) = inf{c(x, y)− ψ(y) | y ∈ Ω∗}.

From the definition, ϕ∗ is obviously c∗-concave and ψ∗ is c-concave. If ϕ is c-concave and
c(x, y0) + a is a c-support function of ϕ at x0, then ϕ∗(y0) = −a and c(x0, y) − ϕ(x0) is a c∗-
support function of ϕ∗ at y0. Hence the c∗-transform of ϕ∗, when restricted to Ω, is ϕ itself. In
particular we see that y ∈ Tϕ(x) if and only if x ∈ Tϕ∗(y).

Lemma 3.1. Let ϕ be a c-concave function. Let

Y = Yϕ = {y ∈ Rn | ∃ x1 6= x2 ∈ Ω, such that y ∈ Tϕ(x1) ∩ Tϕ(x2)}.

Then Y has Lebesgue measure zero.

Proof. Let ψ be the c-transform of ϕ. Then ϕ is the c∗ transform of ψ. Observe that if y ∈
Tϕ(x1) ∩ Tϕ(x2), we have x1, x2 ∈ Tψ(y). Hence ψ is not twice differentiable at y. But since ψ is
semi-concave, ψ is twice differentiable almost everywhere. ut

It follows that µ is countably additive, see [3,10,24].

Lemma 3.2. Let ϕi be a sequence of c-concave functions which converges to ϕ locally uniformly
in Ω. Then for any compact set K ⊂ Ω and open set U ⊂⊂ Ω, we have

limi→∞µϕi,g(K) ≤ µϕ,g(K), (3.3)
limi→∞µϕi,g(U) ≥ µϕ,g(U). (3.4)
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Proof. To prove (3.3) it suffices to prove
⋂

i→∞

⋃

j≥i

Tϕj
(K) ⊂ Tϕ(K). (3.5)

To prove (3.5), we suppose xi ∈ K and yi ∈ Tϕi
(xi) such that yi converges to y0. Let hi(x) =

ai + c(x, yi) be a c-support function of ϕi at xi. Obviously ai is uniformly bounded. Letting i →∞
we obtain hi → h0 and h0 = a + c(x, y0) is a c-support function of ϕ at x0. Hence y0 ∈ Tϕ(x0),
and the inclusion (3.5) is proved.

To prove (3.4), we fix (as for example in [10]) a compact set K ⊂ U . Then for sufficiently large
i, we have

Tϕ(K)− Yϕ ⊂ Tϕi
(U),

so that by Lemma 3.1,

µϕ,g(U) = supK⊂U µϕ,g(K)
≤ limi→∞µϕi,g(U).

ut

Corollary 3.1. Let {ϕi} be a sequence of c-concave functions in Ω. If ϕi → ϕ, then µϕi,g → µϕ,g

weakly as measures in Ω.

Let Pk = {p1, · · · , pk} be arbitrary k points in Ω and ϕ be a c-concave function. Let

ηk(x) = inf{c(x, y) + a}, (3.6)

where the infimum is taken over all a ∈ R and y ∈ Rn such that c(pi, y)+a ≥ ϕ(pi) for i = 1, · · · , k
and c(x, y) + a ≥ ϕ(x) for x ∈ ∂Ω. It is easy to see that µηk,g is a discrete measure, supported on
the set Pk. Choosing a proper sequence of {Pk} such that ηk → ϕ, by Lemma 3.2 we see that µϕ,f

is a Radon measure.

For the standard Monge-Ampère equation (2.22), which corresponds to the cost function
c(x, y) = x · y, the above properties of the measure µϕ,g can also be found in [10,24] for the
case g = 1, and in [3] for general positive function g.

Definition 3.2. A c-concave function ϕ is called a generalized solution of (2.17) if µϕ,g = f dx in
the sense of measures, that is for any Borel set E ⊂ Ω,

∫

E

f =
∫

Tϕ(E)

g. (3.7)

If furthermore ϕ satisfies

Ω∗ ⊂ Tϕ(Ω), |{x ∈ Ω | f(x) > 0 and Tϕ(x)− Ω
∗ 6= ∅}| = 0, (3.8)

then ϕ is a generalized solution of (2.17) (2.18).



10 Xi-Nan Ma, Neil S. Trudinger, Xu-Jia Wang

For the standard Monge-Ampère equation (2.22), namely when c(x, y) = x ·y, the above gener-
alized solution was introduced by Aleksandrov with g = 1 and Bakelman for general nonnegative
locally integrable function g, see [3]. Note that for the boundary condition (3.8), we need to extend
g to Rn −Ω∗ by letting g = 0 so that the mass balance condition (2.1) is satisfied.

Let u be a generalized solution of (2.17) and v its c-transform. Let Eu and Ev denote respectively
the sets on which u and v are not twice differentiable. Then |Eu| = |Ev| = 0, and for any x ∈ Tv(Ev),
there is a point y ∈ Ev such that y ∈ Tu(x). Since Tu(x) is a single point for all x ∈ Ω − Eu, we
have

∫

Tv(Ev)

f =
∫

Ev

g = 0. (3.9)

The above formula implies that Tu is one to one almost everywhere on {x ∈ Ω | f(x) > 0}. It
follows that Tu is a measure preserving mapping. Hence if u is a generalized solution of (2.17)
(2.18), by condition (3.8) and the mass balance condition (2.1), we have Tu(x) ∈ Ω∗ for almost all
x ∈ {f > 0}. It follows that for any Borel set E∗ ⊂ Ω∗,

∫

E∗
g =

∫

Tv(E∗)
f, (3.10)

where v is the c-transform of u. Hence we have

Lemma 3.3. Let u be a generalized solution of (2.17) (2.18). Let v be the c-transform of u. Then
v is a generalized solution of (2.20) (2.21)

The next lemma shows that a c-concave function is a generalized solution if and only if it is
a potential function. In particular, if c(x, y) = x · y, then a generalized solution of Aleksandrov-
Bakelman (with g = 0 outside Ω∗) is equivalent to a generalized solution of Brenier [4].

Lemma 3.4. Let (u, v) be a maximizer of the functional I over K. Then u is a generalized solution
of (2.17) and (2.18).

Conversely, if u is a generalized solution of (2.17) and (2.18), then (u, v) is a maximizer of the
functional I over K, where v is the c-transform of u.

Proof. Let (u, v) be a maximizer. Then by (2.7), u is c-concave and v is c∗-concave, and v is the c-
transform of u. By [6,15], the mapping Tu, as determined by (2.12), is a measure preserving optimal
mapping. Hence Tu is a one to one mapping from {x ∈ Ω | f(x) > 0} to {y ∈ Ω∗ | g(y) > 0}
almost everywhere. Hence u is a generalized solution of (2.17). The assumption (2.1) implies that
(3.8) holds.

Conversely, if u is a generalized solution of (2.17) and (2.18), then v is a generalized solution of
(2.20) and (2.21). Hence Tu is a one to one mapping from {x ∈ Ω | f(x) > 0} to {y ∈ Ω∗ | g(y) > 0}
almost everywhere. By (3.7) we have

∫

Ω∗
h(y)g(y) =

∫

Ω

h(Tu(x))f(x))
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for any continuous function h ∈ C(Ω∗). It follows that
∫

u(x)f(x)dx +
∫

v(y)g(y)dy =
∫

(u(x)f(x) + v(Tu(x))f(x))dx

=
∫

c(x− Tu(x))f(x)dx. (3.11)

Hence (u, v) is a maximizer by (2.6). ut

The existence and uniqueness of maximizers to the functional I can be found in [6,15], where
the cost function is assumed to be of the form c(x, y) = c̃(x−y) for some strictly convex or concave
function c̃. But the argument there applies to general smooth cost functions satisfying (A1). Note
that the uniqueness of optimal mappings in [6,15] implies the uniqueness of potential functions
(up to a constant). Namely if (u1, v1) and (u2, v2) are two maximizers, then Du1 = Du2 a.e. on
{f > 0}. By Lemma 3.4 we have accordingly the following existence and uniqueness of generalized
solutions.

Theorem 3.1. Let Ω and Ω∗ be two bounded domains in Rn. Suppose f and g are two positive,
bounded, measurable functions defined respectively on Ω and Ω∗, satisfying condition (2.1). Suppose
the cost function c(x, y) ∈ C2(Rn × Rn) and satisfies assumption (A1). Then there is a unique
generalized solution to (2.17) (2.18).

Remark 3.2. The existence and uniqueness of generalized solutions can also be proved by the
Perron method; see [32] for the treatment of the reflector antenna design problem, which is a
special optimal transportation problem [33]. See also Section 7.1 below.

4. Second derivative estimates

Consider the equation

det wij = ϕ in Ω (4.1)

where wij = cij(x, T (x))− uij , and ϕ = | det(D2
xyc)| f(x)

g(T (x)) . Suppose ϕ > 0 and the matrix {wij}
is positive definite. Write (4.1) in the form

log det wij = ψ, (4.2)

where ψ = log ϕ. Then we have, by differentiation,

wijwij,k = ψk

wijwij,kk = ψkk + wiswjtwij,kwst,k ≥ ψkk, (4.3)

where (wij) is the inverse of (wij). We use the notation wij,k = ∂
∂xk

wij , cijk = ∂
∂xk

cij(x, y),
cij,k = ∂

∂yk
cij(x, y), Ts,k = ∂

∂xk
Ts etc. That is

−wij [uijk − cijk − cij,sTs,k] = ψk,

−wij [uijkk − cijkk − 2cijk,sTs,k − cij,sTs,kk − cij,stTs,kTt,k] ≥ ψkk. (4.4)
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Let

G(x, ξ) = η2(x)wξξ, (4.5)

where η is a cut-off function, and for a vector ξ ∈ Rn we denote wξξ =
∑

ξiξjwij . Suppose G
attains a maximum at x0 and ξ0 ∈ Sn−1. By a rotation of the coordinate system we assume
ξ0 = e1. At x0 we have

(log G)i =
w11,i

w11
+ 2

ηi

η
= 0,

(log G)ij =
w11,ij

w11
− w11,iw11,j

w2
11

+ 2
ηij

η
− 2

ηiηj

η2

=
w11,ij

w11
+ 2

ηij

η
− 6

ηiηj

η2
. (4.6)

Hence
0 ≥ w11

∑
wij(log G)ij = wijw11,ij + 2

w11

η
wijηij − 6w11w

ij ηiηj

η2
.

We have
w11,ij = c11ij + c11i,sTs,j + c11j,sTs,i + c11,sTs,ij + c11,stTs,iTt,j − u11ij .

It follows that
0 ≥ wij [c11,sTs,ij + c11,stTs,iTt,j − u11ij ]−K,

where we use K to denote a positive constant satisfying

K ≤ C(1 + w2
11 +

w11

η2

∑
wii).

By (4.4),
−wijuij11 ≥ −wij [cij,sTs,11 + cij,stTs,1Tt,1]−K.

Hence we obtain

0 ≥ −wij [cij,sTs,11 + cij,stTs,1Tt,1]
+wij [c11,sTs,ij + c11,stTs,iTt,j ]−K. (4.7)

Recall that

wij = cij − uij = −ci,kTk,j . (4.8)

From the first relation,

wki,j = ckij + cki,pTp,j − ukij

= wij,k + cki,pTp,j − cij,pTp,k. (4.9)

From the second one we have

−wki,j = ckj,pTp,i + ck,pqTp,iTq,j + ck,pTp,ij . (4.10)

Hence

Tp,ij = −cp,kwki,j − cp,k[ckj,sTs,i + ck,stTs,iTt,j ]
= −cp,kwij,k − cp,k[cki,sTs,j − cij,sTs,k + ckj,sTs,i + ck,stTs,iTt,j ]. (4.11)
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Note that by (4.8),

Tk,j = −ck,iwij . (4.12)

We have |T | ≤ Cw11. Hence

wijTp,ij = −cp,kwijwij,k − cp,kwij [2cki,sTs,j − cij,sTs,k + ck,stTs,iTt,j ]
= −cp,kwijck,stTs,iTt,j + O(K). (4.13)

By (4.12),

wijTp,iTq,j = cp,scq,twijwsiwtj = O(w11). (4.14)

Inserting (4.13) (4.14) into (4.7) we obtain

0 ≥ −wij [cij,sTs,11 + cij,stTs,1Tt,1]−K. (4.15)

We have from (4.11)

Ts,11 = −cs,kw11,k − cs,k[2ck1,pTp,1 − c11,pTp,k + ck,pqTp,1Tq,1]
= −cs,kck,pqTp,1Tq,1 + O(K).

Hence we obtain, by (4.12)

0 ≥ −wijcij,stTs,1Tt,1 + cl,kck,stcij,lw
ijTs,1Tt,1 −K

= wij [ck,lcij,kcl,st − cij,st]cs,pct,qwp1wq1 −K, (4.16)

where the summation runs over all parameters from 1 to n.

Let us assume by a rotation of coordinates that the matrix {wij} is diagonal at x0. Then we
obtain

wii[ck,lcii,kcl,st − cii,st]cs,1ct,1w2
11 ≤ K.

By assumption (A3), we obtain

w2
11

∑
wii ≤ K.

Observing that
n∑

i=1

wii ≥
n∑

i=2

wii ≥ [ n∏

i=2

wii
] 1

n−1 ≥ Cw
1

n−1
11 ,

we obtain η2w11 ≤ C, namely G ≤ C. We have thus proved

Theorem 4.1. Let u ∈ C4(Ω) be a c-concave solution of (4.1). Suppose assumptions (A1)-(A3)
are satisfied. Then we have the a priori second order derivative estimate

|D2u(x)| ≤ C, (4.17)

where C depends on n, dist(x, ∂Ω), supΩ |u|, ψ up to its second derivatives, the cost function c up
to its fourth order derivatives, the constant c0 in (A3), and a positive lower bound of |det D2

xyc|.
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With the estimate (4.17), equation (4.1) becomes a uniformly elliptic equation, and so higher
order derivative estimates follows from the elliptic regularity theory [17].

Instead of the auxiliary function G given in (4.5), we can choose the auxiliary function G =
η2

∑
wkk = ∆w. Then by the same computation as above, we have

wij [ck,lcij,kcl,st − cij,st]cs,pct,qwpmwqm ≤ K. (4.18)

Hence we also need to assume condition (A3).

Remark 4.1. From our preceding argument or by direct calculation we have the formula

Aij,kl =:
∂2Aij

∂zk∂zl
= (cij,rs − cp,qcij,pcq,rs)cr,kcs,l, (4.19)

where

Aij(x, z) = cij(x, T (x, z)), (4.20)

and T (x, z) is the mapping determined by (2.12), namely Dxc(x, T (x, z)) = z. Consequently con-
dition (A3) may be written in the form

Aij,klξiξjηkηl ≤ −c0|ξ|2|η|2 (4.21)

for all ξ ⊥ η ∈ Rn.

Moreover our proof of Theorem 4.1 extends to Monge-Ampère equations of the form

det[A(x, u, Du)−D2u] = B(x, u,Du), (4.22)

where A and B are respectively C2 matrix and scalar valued functions on Ω ×R×Rn with

Aij,kl(x, u, z) =
∂2Aij

∂zk∂zl
(x, u, z)

satisfying (4.21) with respect to the gradient variables and B > 0. Any elliptic solution u ∈ C4(Ω)
of (4.22) will satisfy an interior estimate of the form (4.17), with constant C depending on n,
dist(x, ∂Ω), supΩ(|u| + |Du|), A and B. The Heinz-Lewy example [26] shows that there is no C1

regularity for equation (4.22) without some restriction on A.

If D2
xc is positive definite, we can also choose the auxiliary function

G = η2
∑

cijwij , (4.23)

where {cij} is the inverse matrix of {cij}. The advantage of this function is that it is invariant
under linear transformation. Denote H =

∑
cijwij . Suppose G attains a maximum at x0. Then

we have, at x0,

0 ≥ H
∑

wij(log G)ij ≥
∑

wijHij −K

= wij
[
cklwkl,ij − 2cksclt(∂xicst)wkl,j

−cksclt(∂2
xixj

cst)wkl + 2ckpcsqclt(∂xicst)(∂xj cpq)wkl

]−K.
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To control the terms

A = wij
[− 2cksclt(∂xicst)wkl,j + 2ckpcsqclt(∂xicst)(∂xj cpq)wkl

]
,

one observes that G is invariant under linear transformations. Hence one may assume by a linear
transformation that {cij} is the unit matrix and wij is diagonal. Then

A = 2wii
[− (∂xickl)wkl,j + (∂xickl)2wkk

] ≥ −1
2
wiiwkkw2

kl,i.

Hence A can be controlled by the term wiswjtwij,kwst,k in (4.3) (note that wii(∂xi
ckl)2wkk ≤ K

by (4.12)-(4.14)). It follows that

wijcklwkl,ij − ckscltwklw
ij(∂2

xixj
cst) ≤ K. (4.24)

The first term can be estimated in the same way as (4.16) or (4.18). For the second one, we have
by (4.12)-(4.14) that

−ckscltwklw
ij(∂2

xixj
cst) = ckscltcst,pcij,qc

p,acq,bwklwabw
ij −K.

Hence by (4.18), we obtain

cabwij [ck,lcij,kcl,st − cij,st]cs,pct,qwpawqb

+ckscltcst,pcij,qc
p,acq,bwklwabw

ij ≤ K. (4.25)

If the matrix {cij} is negative, we replace the auxiliary function G in (4.23) by G = η2
∑

(−cij)wij

and obtain

−cabwij [ck,lcij,kcl,st − cij,st]cs,pct,qwpawqb − ckscltcst,pcij,qc
p,acq,bwklwabw

ij ≤ K.

If {cij} is not definite, we can replace G by G = η2
∑

ckicjkwij and obtain similar sufficient
condition.

To verify (4.25), one may choose a proper coordinate system such that {cij} = I is the unit
matrix and {ci,j} = −I at x0, and {wij} is diagonal, as we will do in Section 6. Then (4.25) can
be rewritten as

(−cii,kck,jj − cii,jj)w2
jjw

ii + ckk,lcii,lwkkwllw
ii < K. (4.26)

5. Proof of Theorem 2.1

With the a priori estimates established in Section 4, we need only to show that a generalized
solution of (2.17) (2.18) can locally be approximated by smooth ones.

We will use the notion of extreme points of convex sets. For a bounded convex set E ⊂ Rn, we
say x0 is an extreme point of E if there is a hyperplane P such that P ∩E = {x0}. It is well known
that any point x ∈ E can be represented as a linear combination of extreme points of E, namely
there exists extreme points x1, · · · , xk and nonnegative constants α1, · · · , αk with

∑
αi = 1 such

that x =
∑

αixi.

We also need an obvious property of concave functions. That is for any x0 ∈ Ω and any extreme
point y ∈ ∂+u(x0), there is a sequence of points {xi} ⊂ Ω−{x0} such that u is twice differentiable
at xi and Du(xi) → y.
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Lemma 5.1. Let u be a generalized solution of (2.17). Suppose f > 0 in Ω, and Ω∗ is c∗-convex
relative to Ω. Then Tu(Ω) ⊂ Ω

∗
.

Proof. Let G denote the set of points where u is twice differentiable. Then for any x ∈ G, Tu(x)
is a single point. Moreover, for any x0 ∈ Ω and any sequence (xi) ⊂ G such that xi → x0 and
Tu(xi) → y0 for some y0 ∈ Rn, we have y0 ∈ Tu(x0). It follows that if there is a point x0 ∈ G such
that Tu(x0) 6∈ Ω

∗
, then for almost all x ∈ Ω, close to x0, we have Tu(x) 6∈ Ω

∗
. The mass balance

condition implies this is impossible.

Observe that if xi → x0 and Tu(xi) → y0, then y0 ∈ Tu(x0). Hence for any point x0 ∈ Ω −G,
if Tu(x0) is a single point, then it falls in Ω

∗
. If Tu(x0) contains more than one point, then the

super-gradient ∂+u(x0) is a convex set. For every extreme point y ∈ ∂+u(x0), let z be the unique
solution of y = Dxc(x0, z). Then z ∈ Ω

∗
since there is a sequence (xi) ∈ G such that Tu(xi) → z.

Hence Tu(x0) ⊂ Ω
∗

as Ω∗ is c∗-convex and any point z ∈ ∂+u(x0) can be represented as a linear
combination of extreme points of ∂+u(x0). ut

Lemma 5.2. (Monotonicity) Let Ω be a bounded domain in Rn and u, v ∈ C0(Ω), c-concave
functions satisfying u ≤ v in Ω and u = v on ∂Ω. Then Tu(Ω) ⊂ Tv(Ω).

Proof. This result follows, as in the Monge-Ampère case, by vertical translation upwards of c-
support functions for u. ut

From Lemma 5.2 follows a simple comparison principle, namely if u, v ∈ C0(Ω) are c-concave,
u ≤ v on ∂Ω, µu,g < µv,g in Ω, then u ≤ v in Ω. For a more general result, based on the
Aleksandrov argument [1], see [16].

Proof of Theorem 2.1. It suffices to show that u is smooth in any sufficiently small ball
Br ⊂⊂ Ω. For this purpose we consider the approximating Dirichlet problems

det(D2
xc−D2w) = | det(D2

xyc)| f

g ◦ T
in Br, (5.1)

w = um on ∂Br,

where {um} is a sequence of smooth functions converging uniformly to u. We want to prove that
(5.1) has a C3 smooth solution w = wm such that the matrix {D2

xc−D2w} is positive definite.

First we show that if w is a C2 solution of (5.1), the cost function c(x, y) satisfies assumption
(A3) at any points x ∈ Br and y ∈ Tw(Br), so that the a priori estimate in §4 applies. Indeed we
may assume that (A3) holds in Ω̃ × Ω̃∗, where Ω̃ and Ω̃∗ are respectively c-convex neighborhoods
of Ω and c∗-convex neighborhoods of Ω

∗
. By the semi-concavity of u, there exists a constant C

such that the function ũ = u−C|x|2 is concave and |Du| < C. For h > 0 sufficiently small, we let

ũh(x) =
∫

ρ(
x− y

h
)u(y), (5.2)

denote the mollification of ũ, with respect to a symmetric mollifier ρ ≥ 0,∈ C∞0 (Rn),
∫

ρ = 1,
suppρ ⊂ B1(0). Setting

um = ũhm + C|x|2, (5.3)
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where hm → 0, we then have um → u uniformly and

D2um ≤ C, |Dum| ≤ C. (5.4)

Moreover for sufficiently large k and small r, the functions

v = vm = um + k(r2 − |x|2) (5.5)

will be upper barriers for (5.1), that is, writing (5.1) in the form (4.22), we have A(x,Dv) > D2v
and

det(A(x,Dv)−D2v) ≥ B(x, Dv) in Br, (5.6)
v = um on ∂Br.

Consequently by the classical comparison principle [17], we have

wm ≤ vm in Br,

whence
Twm

(∂Br) ⊂ Tvm
(Br).

It follows that Twm(Br) ⊂ Ω̃ if kr is small. Hence c is well defined on Br × Tw(Br).

The preceding arguments yield a priori bounds for solutions and their gradients of the Dirichlet
problem (5.1). To conclude the existence of globally smooth solutions, we need global second
derivative bounds. The argument of the previous section, with η = 1, clearly implies a priori
bounds for second derivatives in terms of their boundary estimates. The latter can be established
similarly to [32], (see also [17,19]), or by directly using the method introduced in [27,28] for the
Monge-Ampère equation. The key observation again is that functions of the form k(r2 − |x|2)
provide appropriate barriers for large k and small r. From the interior estimates in Theorem 4.1,
we finally infer the existence of locally smooth elliptic solutions w of the Dirichlet problem (5.1)
with w = u on ∂Br. Finally it remains to show that w = u in Br. By perturbation of w, we may
suppose that the set ωε = {x ∈ Br | w(x) > u(x) + ε} has sufficiently small diameter, with w
c-concave a strict supersolution of equation (5.1) in ωε, that is µw,g < µu,g in ωε. From Lemma
5.2, we thus conclude w ≤ u in Br and similarly w ≥ u follows. ut

Our argument above may also be used to prove interior regularity for the generalized Dirichlet
problem, the solvability of which depends upon the existence of barriers. Note that the condition
of c-convexity is not directly relevant to the Dirichlet problem.

6. Verification of assumption (A3)

In this section we give some cost functions which satisfy assumption (A3). First we consider
cost functions of the form

c(x, y) = ϕ(
1
2
|x− y|2). (6.1)

In general a function of the form (6.1) does not satisfies (A3), see for example §7.5.
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For the cost function (6.1), we have ∂yi
c = −∂xi

c. We can write c(x, y) as c(x− y). Then (A3)
is equivalent to

∑

k,l,s,t

(cklciikcstl − ciist)csjctj ≥ c0 (6.2)

for any fixed 1 ≤ i, j ≤ n, i 6= j, where (cij) is the inverse matrix of (cij).

It is hard to verify (6.2) directly, as it involves fourth order derivatives. To verify (6.2), we recall
the estimate (4.16), which can be written as

wij [cklcijkclst − cijst]cspctqwpξwqξ ≤ K, (4.16)′

where ξ is the unit vector in which the auxiliary function G = η(x)wξξ attains its maximum at
some point x0. Let y0 = Tu(x0) and assume by a rotation of coordinates that x0− y0 = (r, 0, ..., 0).
We first make a linear transformation (dilation) such that {cij} = ϕ′I at x0 − y0, then make
a rotation of coordinates such that {wij} is diagonal. Then the unit vector ξ = αkek for some
constants αk, and (4.16)′ becomes

wii[ciikckst − ciist]αsαtwsswtt ≤ K, (4.16)′′

where {ek} are the axial directions. After the coordinate transformations, it suffices to verify

Σkciikckjj − ciijj ≥ c0 > 0 (6.3)

for any i 6= j. Namely (6.3) implies (A3).

We compute

ci = ϕ′ri,

cij = ϕ′δij + ϕ′′rirj

where ri = xi − yi. At the point (r, 0, ..., 0), we have

{cij} = diag(ϕ′ + r2ϕ′′, ϕ′, ..., ϕ′).

Suppose that ϕ′

ϕ′+r2ϕ′′ > 0. Let

x1 = βx̃1,

xi = x̃i, i > 1,

where β =
√

ϕ′
ϕ′+r2ϕ′′ . Then

c(x̃) = ϕ(
1
2
(β2x̃2

1 + x̃2
2 + ... + x̃2

n))

with

{cij} = ϕ′I at x̃0 = (
r

β
, 0, ..., 0) (6.4)

in the coordinates x̃, where I is the unit matrix.
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We make a rotation x̃ = Ay, where A is an orthogonal matrix. Then

c(y) = ϕ(
1
2
y′By),

where
B = A′B̂A, B̂ = diag(β2, 1..., 1).

Denote z = By. We have, at the point y0 = A′x̃0,

|z|2 = z′ · z = y′A′B̂2Ay

= x̃′B̂2x̃ = β2r2 =
ϕ′r2

ϕ′ + r2ϕ′′
. (6.5)

In the y-coordinates, we have

ci = ϕ′zi,

cij = ϕ′bij + ϕ′′zizj ,

cijk = ϕ′′(bijzk + bikzj + bjkzi) + ϕ′′′zizjzk,

cijkl = ϕ′′(bijbkl + bikbjl + bilbjk)
+ϕ′′′(bijzkzl + bikzjzl + bilzjzk + bjkzizl + bjlzizk + bklzizj)
+ϕ′′′′zizjzkzl.

By (6.4) and since A is orthogonal, we have {cij} = ϕ′I in the y-coordinates. From the above
formula for cij , we obtain

bij = δij − ϕ′′

ϕ′
zizj .

Hence

cijk = ϕ′′(δijzk + δikzj + δjkzi) + (ϕ′′′ − 3
(ϕ′′)2

ϕ′
)zizjzk,

cijkl = ϕ′′(δijδkl + δikδjl + δilδjk)

+(ϕ′′′ − (ϕ′′)2

ϕ′
)(δijzkzl + δikzjzl + δilzjzk + δjkzizl + δjlzizk + δklzizj)

+[ϕ′′′′ − 6
ϕ′′′ϕ′′

ϕ′
+ 3

(ϕ′′)3

(ϕ′)2
]zizjzkzl.

Denote F =: Σkckkciikcjjk − ciijj . From the above formulae and noting that i 6= j, we obtain

F =
z2
k

ϕ′
[
ϕ′′(1 + 2δik) + (ϕ′′′ − 3

(ϕ′′)2

ϕ′
)z2

i

] [
ϕ′′(1 + 2δjk) + (ϕ′′′ − 3

(ϕ′′)2

ϕ′
)z2

j

]

−[ϕ′′ + (ϕ′′′ − (ϕ′′)2

ϕ′
)(z2

i + z2
j ) + (ϕ′′′′ − 6

ϕ′′′ϕ′′

ϕ′
+ 3

(ϕ′′)3

(ϕ′)2
)z2

i z2
j ]. (6.6)

First let us check the cost function

c(x, y) =
√

1 + |x− y|2. (6.7)
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The corresponding Monge-Ampère equation is

det(−D2u + (1− |Du|2)1/2(δij − uiuj)) = (1− |Du|2)(n+2)/2f(x)/g(T (x)). (6.8)

The negative sign on the left hand side is due to the c-concavity of u. For the cost function (6.7),
we have φ(t) =

√
1 + 2t, and by direct computation,

ϕ′′′ − 3
(ϕ′′)2

ϕ′
= 0,

ϕ′′′′ − 6
ϕ′′′ϕ′′

ϕ′
+ 3

(ϕ′′)3

(ϕ′)2
= 0. (6.9)

Hence

F = −ϕ′′ +
(ϕ′′)2

ϕ′
[
Σk(1 + 2δik)(1 + 2δjk)z2

k − 2(z2
i + z2

j )
]

= −ϕ′′ + |z|2 (ϕ′′)2

ϕ′
≥ −ϕ′′ > 0. (6.10)

The matrix A in (6.8) is given by

A(x, z) = A(z) = (1− |z|2)1/2(δij − zizj) (6.11)

and our calculations above show that

Aij,klξiξjηkηl > 0 (6.12)

for all ξ, η ∈ Rn, ξ ⊥ η, |z| < 1. The condition (6.12) may also be verified directly from (6.11). We
remark that (6.10) and (6.12) are not true for all |z| < 1 if i = j in (6.3) or ξ = η in (6.12).

Note also for (6.7) that (A1) only holds for |z| < 1. However this does not affect our proof on
Theorems 2.1 and 3.1.

By a linear transformation, (A3) is also satisfied for

c(x, y) = [1 + aij(xi − yi)(xj − yj)]1/2,

where {aij} is a positive matrix. Note that the graph of the function [1+aijxixj ]1/2 is a hyperboloid.

Next we verify (A3) for the cost function

c(x, y) =
√

1− |x− y|2 (6.13)

For this cost function, equation (2.17) takes the form

det(−D2u− (1 + |Du|2)1/2(δij + uiuj)) = (1 + |Du|2)(n+2)/2f(x)/g(T (x)). (6.14)

For the cost function (6.13), we have ϕ(t) =
√

1− 2t. Hence (6.9) holds and similarly to (6.10) we
have

F = −ϕ′′ + |z|2 (ϕ′′)2

ϕ′
.
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By (6.5) and noting that ϕ′ < 0, we obtain

F ≥ − ϕ′ϕ′′

ϕ′ + r2ϕ′′
> 0, (6.15)

so that (A3) is satisfied if |x − y| < 1 for all x ∈ Ω and y ∈ Ω
∗
. Unlike the case of our previous

example, (A3) holds without the restriction ξ ⊥ η. This is easily seen directly from (6.14) and is
equivalent to the function Aijξiξj(x, z) being uniformly convex with respect to z.

By a linear transformation, one sees that (A3) is satisfied for

c(x, y) = [1− aij(xi − yi)(xj − yj)]1/2,

where {aij} is a positive matrix. The graph of the function [1 − aijxixj ]1/2 is an ellipsoid. Note
that the function

√
1 + |x|2 is the Legendre transform of −

√
1− |x|2.

The cost function c(x, y) =
√

1− |x− y|2 is defined only for |x− y| < 1. Therefore we need to
assume d =: sup{|x− y| | x ∈ Ω, y ∈ Ω∗} < 1. As noted above, this does not affect our proof on
Theorems 2.1 and 3.1.

Next we consider an extension of the cost function (6.7). That is

c(x, y) = (1 +
1
2
|x− y|2)p,

1
2
≤ p < 1. (6.16)

When p = 1, it is the quadratic function. We have ϕ(t) = (1 + t)p. Hence

ϕ′′′ − 3
ϕ′′2

ϕ′
= p(p− 1)(1− 2p)(1 + t)p−3,

ϕ′′′ − ϕ′′2

ϕ′
= −p(p− 1)(1 + t)p−3,

ϕ′′′′ − 6
ϕ′′′ϕ′′

ϕ′
+ 3

ϕ′′3

ϕ′2
= p(p− 1)(p− 3)(1− 2p)(1 + t)p−4.

By (6.6),

(1 + t)2−p

p(1− p)
F = (1− p)

z2
k

1 + t

[
(1 + 2δik) + (1− 2p)

z2
i

1 + t

]
·

[
(1 + 2δjk) + (1− 2p)

z2
j

1 + t

]

+
[
1− z2

i + z2
j

1 + t
+ (3− p)(2p− 1)

z2
i z2

j

(1 + t)2

]

= (1− p)
[ |z|2
1 + t

+ 2
z2
i + z2

j

1 + t
+ (1− 2p)

|z|2(z2
i + z2

j )
(1 + t)2

+4(1− 2p)
z2
i z2

j

(1 + t)2
+ (1− 2p)2

|z|2z2
i z2

j

(1 + t)3

]

+
[
1− z2

i + z2
j

1 + t
+ (3− p)(2p− 1)

z2
i z2

j

(1 + t)2

]
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=
[
1− (2p− 1)

z2
i + z2

j

(1 + t)
+ (2p− 1)(3p− 1)

z2
i z2

j

(1 + t)2

]

+(1− p)
|z|2
1 + t

[
1 + (1− 2p)

z2
i + z2

j

1 + t
+ (1− 2p)2

z2
i z2

j

(1 + t)2

]
.

Hence F > 0.

By a dilation we also obtain the interior regularity of potential functions for the cost function

c(x, y) = (ε + |x− y|2)p/2 (6.17)

where 1 ≤ p < 2 and ε > 0 is a constant. By sending ε → 0, the cost function in (6.17) converges
to

c(x, y) = |x− y|p 1 ≤ p < 2. (6.18)

For the cost function (6.18), the best possible regularity for potential functions is C1,p−1 for
1 < p < 2 and C0,1 when p = 1, see §7.5. By the regularity for the cost function (6.17), it is
reasonable to expect the C1,α regularity for the cost function in (6.18) with 1 < p < 2. We hope
to treat the problem in a separate work.

Finally we consider cost functions determined by the distance between points on graphs of
functions over Rn. Suppose that f and g are C2 functions defined on Ω and Ω∗ respectively with
graphs Mf , Mg and let X = (x, f(x)), Y = (y, g(y)) denote points in Mf and Mg. Then the cost
function

c̃(x, y) := |X − Y |2 (6.19)

is equivalent to the cost function

c(x, y) = −(x · y + f(x)g(y)). (6.20)

By direct computation, we obtain

ci,j = −δij − figj ,

det ci,j = (−1)n(1 +∇f · ∇g) 6= 0 if ∇f · ∇g 6= −1,

ci,j = −(
δij − figj

1 +∇f · ∇g

)
,

cij,k = −fijgk,

cl,st = −flgst,

cij,st = −fijgst,

Σk,lc
k,lcij,kcl,st − cij,st =

fijgst

1 +∇f · ∇g

Consequently if f and g are uniformly convex or concave, with bounded gradients satisfying ∇f ·
∇g > −1, then (A3) is satisfied (for all ξ, η ∈ Rn). Moreover, if

fijξiξj , gijξiξj ≥ λ|ξ|2 ∀ ξ ∈ Rn,
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and some λ > 0, we obtain, for fixed i, j,

F = cs,jct,j [ck,lcii,kcl,st − cii,st]

=
fiigst

1 +∇f · ∇g
cs,jct,j

≥ λ2

(1 + M2
1 )3

. (6.21)

where M1 ≥ supΩ |∇f |, supΩ∗ |∇g|. An example of a function satisfying the above conditions for
arbitrary bounded Ω ⊂ Rn is given by

f(x) =
√

1 + |x|2, (6.22)

in which case c̃ becomes the square of the distance between points on the hyperboloid, x2
n+1 =

1 + |x|2. Another example will be the paraboloid

f(x) = ε|x|2 (6.23)

for sufficiently small ε > 0, depending on Ω. In particular (A3) is thus satisfied for cost functions

cε(x, y) = −x · y − ε2|x|2|y|2

for sufficiently small ε, which perturbs the standard quadratic cost function c(x, y) = −x · y.

There are other functions satisfying (A3). For example, by the computation in [18,32], the cost
function for the reflector antenna design problem, see (7.7), satisfies a related condition on the
sphere. If one projects it to the Euclidean space, it satisfies assumption (A3).

7. Remarks

7.1. The cost function c(x, y) = |x− y|2

For this special cost function, the problem (2.17) (2.18) is reduced to

g(Du) det D2u = f(x), (7.1)
Du(Ω) = Ω∗,

where 1
2 |x|2−u is the potential function. The problem (7.1), namely prescribing the normal mapping

image, was proposed in [20]. The global smooth convex solution in dimension 2 was first obtained in
[12]. In high dimensions the existence and regularity of solutions were established in [7,8] and later
in [30]. We remark that there is a simpler proof for the existence and interior regularity of solutions
to (7.1) [11], which was used in [34] for the oblique boundary value problem for the Monge-Ampère
equation.

Theorem 7.1. Let Ω∗ be a convex domain in Rn. Suppose f and g are positively pinched functions
satisfying (2.1). Then there is a generalized solution of (7.1), in the sense of Aleksandrov.
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Proof. Let Ψε denote the set of convex sub-solutions w of the equation

g(Dw) det D2w = f(x)eεw, (7.2)

where ε is a small positive constant, such that Dw(Ω) ⊂ Ω∗. Let

uε(x) = sup
w∈Ψε

w(x).

Then uε is a generalized solution of (7.2). By the convexity of Ω∗, we have Duε(Ω) ⊂ Ω
∗
. By

assumption (2.1), we have supΩ uε > 0 > infΩ uε. Hence uε converges as ε → 0 to a generalized
solution u of (7.1). By Duε(Ω) ⊂ Ω

∗
and the convexity of Ω∗, we have Du(Ω) ⊂ Ω

∗
. The

assumption (2.1) implies that Du(Ω) = Ω∗. ut

It was also proved in [11] by constructing proper barriers that if ∂Ω is uniformly convex, then
Du(x) → ∂Ω∗ as x → ∂Ω [11]. Hence for any point x0 ∈ Ω, there is a linear function ` such that
the set ω = {x ∈ Ω | u(x) < `(x)} is contained in Ω and x0 ∈ ω. Hence if f, g ∈ C2, by Pogorelov’s
interior second order derivative estimate [24], (7.1) becomes uniformly elliptic and so u ∈ C3,α(Ω)
for any α ∈ (0, 1).

In the case when Ω = Rn, the existence of generalized solutions was proved by Pogorelov
[23], see also [3,11]. For the existence result in Theorem 7.1, we remark that by approximation, it
suffices to assume that f and g are nonnegative integrable functions satisfying (2.1). The convexity
of Ω∗ can also be dropped by first extending g to a bounded convex domain Ω̃∗ such that g = 0
outside Ω̃∗ − Ω∗ and then choosing a sequence of positive functions gm → g uniformly and using
Corollary 3.1, see [32]. In this case a generalized solution is defined as in (3.7). Recall that for the
Monge-Ampère equation (7.1), the generalized solution of Aleksandrov is usually defined by

|∂+u(E)| =
∫

E

f(x)/g(Du) (7.3)

for any Borel set E ⊂ Ω, where ∂+u is the normal mapping of u. If g > 0, the integration in (7.3)
is well defined as a convex function is differentiable almost everywhere. If Ω∗ is convex and f, g are
bounded positive functions, both definitions (3.7) and (7.3) are equivalent by Lemma 5.1. However
if Ω∗ is not convex, Du(Ω) may not be contained in Ω

∗
completely. In this case we need to use

definition (3.7) as g = 0 outside Ω∗ by the mass balance condition (2.1).

7.2. The reflector antenna design problem

An important application of the optimal transportation theory is the design of the reflector
antenna [33]. The problem is to construct a reflecting surface, which is a radial graph

Γ = {x · ρ(x) | x ∈ Ω}, (7.4)

where Ω is a domain in the unit sphere S2, such that a detector located at the origin can receive
reflected rays from a given region Ω∗ in the outer space, which is regarded as another domain in
the sphere S2. This problem is equivalent to solving the boundary value problem

η−2 det(−∇i∇jρ + 2ρ−1∇iρ∇jρ + (ρ− η)δij) = f(x)/g(T (x)), (7.5)
T (Ω) = Ω∗,
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where ∇ denotes the covariant derivative in a local orthonormal frame on S2, η = (|∇ρ|2 +ρ2)/2ρ,
and

T (x) = Tρ(x) = x− 2〈x, n〉n (7.6)

with n the unit outward normal of Γ .

In [33] it was proved that problem (7.4) can be reduced to an optimal transportation problem
with cost function

c(x, y) = − log(1− x · y), x ∈ Ω, y ∈ Ω∗. (7.7)

More precisely, we have

Theorem 7.2. Suppose Ω and Ω∗ are disconnected, and f and g are bounded positive functions.
Let (ϕ,ψ) be a maximizer of sup(u,v)∈K I(u, v), where I and K are as (2.4) (2.5), with the cost
function given in (7.7) above. Then ρ = eϕ is a solution of (7.4).

The existence and uniqueness of generalized solutions and the a priori estimates, corresponding
respectively to Theorems 3.1 and 4.1, were established in [32]. In this case verification of conditions
(A1) to (A3) is superfluous as the mapping T is already known by (7.6) and the Monge-Ampère
equation (7.5) is in the form (4.22) automatically.

7.3. An example

In this subsection we show that if the domain Ω∗ is not c∗-convex, then there exist smooth,
positive functions f and g such that the generalized solution to (2.17) and (2.18) in Theorem
3.1 is not smooth. The argument here is similar to that in [32], p. 362, where it is shown that
the solution to the reflector antenna design problem may not be smooth if the domain does not
satisfy a geometric condition, which corresponds to the c∗-convexity introduced in this paper. The
existence of non-smooth solutions can be proved in the following steps.

(i) If u is a smooth c-concave solution of (2.17) (2.18), then Tu(Ω) = Ω∗. This follows from
(2.1) immediately.

(ii) If Ω∗ is not c∗-convex, then there exists an open subset set, say a ball, ω ⊂ Ω, and two
points y1, y2 ∈ Ω∗ such that any c∗-segment (relative to any points in ω) connecting y1 and y2, or
more generally connecting any two points respectively in Br(y1), Br(y2) ⊂ Ω∗ for some sufficiently
small r > 0, does not completely fall in Ω∗.

(iii) Let {fi} be a sequence of smooth, positive functions defined on Ω which converges to the
function f0 = χω, the characteristic function of the domain ω. Let {gi} be a sequence of smooth,
positive functions defined on Ω∗ which converges to g0 = C(χBr(y1) + χBr(y2)), where C > 0 is
a positive constant such that the necessary condition (2.1) holds. Let ui be the corresponding
solutions to (2.17) (2.18) with f = fi and g = gi. If ui is smooth, then by (i), Tui(Ω) ⊂ Ω

∗
.

Let u0 = limi→∞ ui. Then u0 is a generalized solution of (2.17) (2.18) with Ω = ω, Ω∗ =
Br(y1) ∪ Br(z2), f = f0, and g = g0. By the mass balance condition, we have for a.e. x ∈ ω,
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Tu0(x) ∈ Br(y1) ∪ Br(y2). Hence there exists a point x0 ∈ ω such that Tu0(x0) contains at least
two points p1 and p2 with p1 ∈ Br(y1) and p2 ∈ Br(z2). Since ui is smooth, for any point x ∈ ω,
there is a unique c-supporting function of ui at x. For any given x0 ∈ ω, and any y ∈ Rn such that
Dxc(x0, y) ∈ ∂+u0(x0), by vertical translation of the graph of c(·, y) and noting that u0 = lim ui,
we see that there is a constant α such that c(·, y) + α is a c-supporting function of u0 at x0. That
is

Tu0(x0) = {y ∈ Rn | Dxc(x0, y) ∈ ∂+u0(x0)}. (7.8)

Note that (7.8) is not true in general for non-smooth solutions, see Remark 3.1 or Section 7.5
below. Recalling that ∂+u0(x0) is a convex set, we see that Tu0(x0) is c∗-convex with respect to
x0. Hence it contains a c∗-segment ` (relative to x0) connecting p1 and p2. Namely ` ⊂ Ω∗. But
since Ω∗ is not c∗-concave, by our choice of y1 and y2 above, ` does not fall in Ω∗ completely. We
reach a contradiction.

7.4. Convexity of domains relative to cost functions

In this subsection we check the c∗-convexity of Ω∗ as assumed in Theorem 2.1. We will assume
both Ω and Ω∗ are topological balls with smooth boundaries. By definition 2.3, Ω∗ is c∗-convex if
any c∗-segment (relative to points in Ω) intersects ∂Ω∗ at most two points.

7.4.1. The cost function c(x, y) = |x − y|2, or equivalently c(x, 0) = −x · y. In this case a c∗-
segment is a line segment in the classical sense, and the c∗-convexity of domains is the same as
convexity in the usual sense.

7.4.2. The reflector antenna design problem. Then we have the cost function c(x, y) = − log(1−
x · y) (see (7.7)), where x, y are points on the unit sphere S2. Recall that a c∗-segment is the
image of the mapping Tu (defined in (2.12)) of a line segment. For the reflection problem, the
mapping T is given by (7.6) and a line segment on the sphere is a part of a great circle, namely
the intersection of S2 with a plane passing through the origin. Therefore a c∗-segment is given by
` =: {y ∈ S2 | y = x− 2〈x, n〉n} for n ∈ S2 on a plane passing through the origin. It is easy to see
that the set ` ⊂ S2 is contained in a plane passing through the origin. Therefore Ω∗ is c∗-convex
if and only if any plane P ⊂ R3 which passes through the origin intersects with ∂Ω∗ at most two
points. In other words, Ω∗ is c∗-convex if and only if it is convex as a domain in the sphere in the
usual sense.

Remark 7.1. In [32] the c∗-convexity was phrased as condition (C) in page 360, and the condition
was mistakenly stated as “any plane P ⊂ R3 which passes through a point in Ω intersects with
∂Ω∗ at most two points”.

7.4.3. The cost function c(x, y) =
√

1 + |x− y|2. For simplicity, we will assume in the following
that the dimension n = 2. By definition 2.2, a c∗-segment is the solution set {y} to Dxc(x0, y) = z
for z on a line segment in Rn. By a translation we assume that x0 = 0. By a rotation of the
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coordinates we assume that the line segment is in {x1 = t}, which is parallel to the x2-axis. Then
we have the equation

−y1√
1 + |y|2 = t,

−y2√
1 + |y|2 = s ∈ R1. (7.9)

Noting that |Dc| < 1, we have t2 + s2 < 1, and hence

y = (y1, y2) =
−(t, s)√

1− t2 − s2
. (7.10)

From the first equation we also have

y1 =
−t√
1− t2

√
1 + y2

2 , (7.11)

which is simply a hyperbola.

From (7.11) we see that if the origin is contained in Ω∗, then Ω∗ is (uniformly) c∗-convex
(relative to the origin) if it is convex. If the origin is not contained in Ω∗, the curvature of the
hyperbola (7.11) attains its maximum at the point ( −t√

1−t2
, 0). The maximum value |t|√

1−t2
is exactly

the transport distance from the origin to the point y given by (7.10) at s = 0. Therefore Ω∗ is
c∗-convex (relative to the origin) if

inf
∂Ω∗

κ > inf{|y| | y ∈ Ω∗}. (7.12)

where κ(y) denotes the curvature of ∂Ω∗ at y (with respect to the inner normal). Condition (7.12)
can be relaxed, indeed on the far side of ∂Ω∗ it suffices to assume ∂Ω∗ is convex.

It follows that if Ω ⊂ Ω∗, then Ω∗ is c∗-convex (relative to Ω) if it is convex. If Ω 6⊂ Ω∗, then
Ω∗ is c∗-convex (relative to Ω) if

inf
∂Ω∗

κ > sup{dx | x ∈ ∂Ω}, (7.13)

where dx = dist(x,Ω∗).

7.4.4. Next we consider the cost function c(x, y) =
√

1− |x− y|2 given in (6.13). Since the graph
of this cost function is a hemisphere, geometrically the center of all spheres tangential to a fixed
line is a unit circle in R3, whose projection on the plane {x3 = 0} is an ellipse, which can be
represented as (after a rotation of axes)

y2
1 +

y2
2

a2
= 1, (7.14)

where a ∈ [0, 1]. When a = 0, the ellipse becomes a line segment.

By definition 2.2, it is easy to see that a c∗-segment must be given by (7.14). Note that the cost
function c is defined only when |x − y| < 1. We assume that sup{|x − y| | x ∈ Ω, y ∈ Ω∗} < R2

for some R < 1. In order that Ω∗ is c∗-convex, the curvature of ∂Ω∗ must be less than that of the
ellipse (7.14) where |y| < R. Direct computation shows that the curvature of (7.14) in {|y| ≤ R}
is bounded by a

(1−(R2−a2))3/2 , which attains its maximum when a = 1
2 (1 − R2). Therefore Ω∗ is

c∗-convex if sup{|x− y| | x ∈ Ω, y ∈ Ω∗} < R2 and the curvature of ∂Ω∗ satisfies

inf
∂Ω∗

κ >

√
2

33/2

1
1−R2

. (7.15)
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7.4.5. For cost functions in (6.19), or equivalently in (6.20), a c∗-segment is the solution set to
the equation

(Dxc(x, y) =) − y − g(y)Df(x) = z

for z on a line segment. By a translation and rotation of coordinates we assume that x = 0 and
z ∈ {x1 = t}. Then we have

y1 + g(y1, y2)f1(0) = −t. (7.16)

Denote ẏ1 = dy1
dy2

and ÿ1 = d2y1
dy2

2
. Differentiating equation (7.16) we have

ẏ1 + f1(g1ẏ1 + g2) = 0,

ÿ1 + f1(g1ÿ1 + g11ẏ
2
1 + 2g12ẏ1 + g22) = 0,

where g1 = ∂
∂y1

g, g12 = ∂2

∂y1∂y2
g etc. The curvature of the c∗-segment at y is equal to

ÿ1

(1 + ẏ2
1)3/2

=
−f1

1 + f1g1

(ẏ1, 1) (D2g) (ẏ1, 1)T

(1 + ẏ2
1)3/2

,

where the superscript T means transpose. Hence

| ÿ1

(1 + ẏ2
1)3/2

| ≤ |f1|
(1 + f1g1)(1 + ẏ2

1)1/2
sup |D2g|

=
|f1|√

(1 + f1g1)2 + f2
1 g2

2

sup |D2g|

≤ |∇f |
1− |∇f | |∇g| sup |D2g|.

Therefore Ω∗ is c∗-convex (relative to any set) if

inf
∂Ω∗

κ >
|∇f |

1− |∇f | |∇g| sup |D2g|. (7.17)

Therefore in comparison with the cost function c(x, y) = |x − y|2, if we choose the uniformly
convex or concave functions f and g such that the right hand side of (7.17) is small, then we
have the advantage of interior regularity of the potential functions, without sacrificing much of the
convexity assumption for the domains.

Recall that if Ω ⊂⊂ Ω∗, the c∗-convexity for the cost function c(x, y) =
√

1 + |x− y|2 is weaker
than that for the quadratic cost function.

7.5. Remarks on the structure condition (A3)

For the Monge-Ampère equation (4.22), condition (A3) is satisfied if the form Aijξiξj is uni-
formly concave with respect to z. As we saw from example (6.7) the extension of this condition to
ξ ⊥ η in (4.21) is crucial. If we only assume the concavity of Aijξiξj or allow c0 = 0 in condition
(A3), then interior regularity need not hold as evidenced by the celebrated example of Pogorelov
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for the Monge-Ampère equation [24]. Under the degenerate form of (A3), one would at most expect
interior regularity under some boundary conditions, as for the Monge-Ampère equation [17,24].

When condition (A3) does not hold, (even in the degenerate form), the problem of reduced
regularity such as in C1 or C1,α for some α > 0, is reasonable, as for example in the case of the
function

c(x, y) =
1
p
|x− y|p, p > 1. (7.18)

For these and other cost functions, we believe that issue of regularity is related to the existence
of c-concave functions ϕ whose contact sets E = {x ∈ Rn | ϕ(x) = c(x, y) + a} are disconnected,
where v(x) = c(x, y) + a is a c-support function. Locally the connectedness of E involves fourth
order derivatives of the cost function c.

To construct a c-concave function for (7.18) (for p > 2) such that E is disconnected, we assume
that n = 2 and Ω = Br(0) for some small r > 0. Let

ηt(x) = ĉ(x1 + t, x2) + αt,

where ĉ(x) = c(x, 0), αt is a constant, α−t = αt, and t ∈ (−1, 1). Let

ϕ(x) = inf{ηt(x) | t ∈ (−1, 1)}.

Then ϕ is c-concave. It is even, and smooth except possibly on the x2-axis.

When p > 2, it is easy to verify that the second derivative ∂2
2 ĉ(t, 0) is increasing as |t| increases

(i.e. ∂1∂
2
2c(t, 0) > 0 for t > 0). Hence there exists αt such that as |t| increases, we have (i) ηt(0)

decreases and (ii) ηt(0,±r) increases. The function ϕ is not smooth at x1 = 0, when restricting to
the line {x2 = 0}.

By a vertical translation, there exists a constant α∗ such that c(x, 0) + α∗ is a c-supporting
function. By (ii) above, we must have α∗ ≥ α0. By (i), the set E can not be connected.

The above argument also applies to the cost functions c(x, y) = −
√

1 + |x− y|2 and c(x, y) =
−

√
1− |x− y|2, that is the negatives of our first two examples in Section 6, as well as the extensions

c(x, y) = (ε + |x− y|2)p/2

for p > 2, (cf example (6.16)).

For the cost function in (7.18) with p ∈ (1, 2), one can show directly by examples that there is
no C1,1 regularity for solutions of (2.17). Indeed, we have

Dxic(x, y) = |x− y|p−2(xi − yi) = −Dyic(x, y), (7.19)

D2
xixj

c(x, y) = |x− y|p−2(δij + (p− 2)
(xi − yi)(xj − yj)

|x− y|2 )

Hence
det [cxiyj (x, y)] = (p− 1)|x− y|n(p−2).
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Let (u, v) be the corresponding potential functions. By (2.12), Dxc(x, y) = Du at y = Tu(x). Hence
from (7.19), we have

x− y = |Du| 2−p
p−1 Du

and
D2

xixj
c(x, y) = |Du| p−2

p−1 (δij + (p− 2)
uiuj

|Du|2 ).

The equation (2.17) becomes

det(I + (p− 2)
Du⊗Du

|Du|2 − |Du| 2−p
p−1 D2u) = (p− 1)

f(x)
g(y)

, (7.20)

where I is the unit matrix. Direct computation shows that if u(x) = C − θ
p |x|p, where C, θ > 0

are constants, the left hand side of (7.20) is equal to (p − 1)(1 + θ
1

p−1 )n. Hence there is no C1,1

regularity for the cost function (7.18) when p ∈ (1, 2).

Finally we note, by considering radial solutions, that the potential functions relative to the cost
function c(x, y) = |x− y| are not C1 smooth in general.

In a future work, we shall investigate connection between (A3) and the connectivity of contact
sets as well as Hölder regularity issues.
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Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la Même année, 1781, pp.
666-704.

23. Pogorelov, A.V.: Monge-Ampère equations of elliptic type, Noordhoff, Groningen, 1964.
24. Pogorelov, A.V.: The multidimensional Minkowski problem, Wiley, New York, 1978.
25. Rachev, S.T., Ruschendorff, L.: Mass transportation problems, Springer, Berlin, 1998.
26. Schulz, F.: Regularity theory for quasilinear elliptic systems and Monge-Ampère equations in two di-

mensions, Lecture Notes in Math., 1445, 1990.
27. Trudinger, N.S., On the Dirichlet problem for Hessian equations, Acta Math. 175,(1995), 151–164.
28. Trudinger, N.S., Lectures on nonlinear elliptic equations of second order, Lectures in Mathematical

Sciences 9, Univ. Tokyo, 1995.
29. Trudinger. N.S., Wang, X.J.: On the Monge mass transfer problem, Calc. Var. PDE 13, (2001) 19-31.
30. Urbas, J.: On the second boundary value problem for equations of Monge-Ampère type, J. Reine

Angew. Math. 487,(1997), 115-124.
31. Urbas, J.: Mass transfer problems, Lecture Notes, Univ. of Bonn, 1998.
32. Wang, X.J.: On the design of a reflector antenna, Inverse Problems, 12,(1996), 351-375.
33. Wang, X.J.: On the design of a reflector antenna II, Calc. Var. PDE, 20,(2004), 329-341.
34. Wang, X.J.: Oblique derivative problems for Monge-Ampère equations(Chinese), Chinese Ann. Math.

Ser. A, 13, (1992), 41–50.

Centre for Mathematics and Its Applications,
The Australian National University,

Canberra, ACT 0200,
Australia.

Current address for Xu-Nan Ma:
Department of Mathematics,

East China Normal University,
Shanghai, 200062, P.R.China.

e-mail: : xnma@math.ecnu.edu.cn,
Neil.Trudinger@maths.anu.edu.au,

wang@maths.anu.edu.au


