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Introduction

Differential geometry is the language of modern physics as well as mathematics.

Typically, one considers sets which are manifolds (that is, locally resemble Euclidean

space) and which come equipped with a measure of distances. In particular, this in-

cludes classical studies of the curvature of curves and surfaces. Local questions both

apply and help study differential equations; global questions often invoke algebraic

topology and ideas from theoretical physics.

Motivated by practical surveying problems about mapping the surface of the earth,

Gauss applied the powerful method of the calculus of Newton and Leibniz in his in-

vestigations on the curvature of surfaces. So one can say that Differential geometry

begins with the study of curves and surfaces in three-dimensional Euclidean space. Us-

ing vector calculus and moving frames of reference on curves embedded in surfaces we

can define quantities such as Gaussian curvature that allow us to distinguish among

surfaces.

Though we live in 4-dimensional space and time, many occasions, people working

at the frontier of science have to use the generalizations of our space-time, which leads

to high dimensional manifolds.

It was Riemann who introduced the notion of a manifold as an appropriate form

of space where one can study geometries. Euclidean geometry then became just one

very special case among infinitely many geometries and the laws of Euclidean geometry

were postulated to be true at a very small scale. These Euclidean measurements is now

allowed to vary from one point to the next.

Einstein who realized that these new geometric ideas should be the basis for under-

standing not just the shape of the earth but that of the whole universe of space and

time. His revolutionary General Theory of Relativity is a masterpiece of Geometric

Physics explaining that mysterious fundamental force of Nature. Gravitation, which

holds the universe together on a large scale, is a manifestation of the curvature of

space-time itself. Later, Einstein dreamed of generalizing his theory to encompass all

the other known forces of Nature: this is known as ”Grand Unified Theory”.

In recent decades, some spectacular new theoretical advances might ultimately be-
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come important stepping stones to realize Einstein’s dream. Among those are Gauge

Theory and String Theory. The idea is to treat particles and the forces between them

not just through points and lines but by using higher dimensional object and to incor-

porate all the degrees of internal freedoms and symmetries that are needed to explain

all the other forces of nature. The central concept is the Curvature, in its various

manifestations, which is the fundamental invariant of Differential Geometry, and can

be calculated by local Euclidean calculus.

This course is to present some basic concepts in differential geometry, such as differ-

entiable manifolds, connections on bundles, curvatures and their characteristic classes.

Mathematical theory of connections and curvatures is the proper context for physi-

cists’ gauge theory, where the term ”gauge potentials” are really the connection forms

for a connection in a local form, and the ”field strength” is the curvature form. Then

the law of nature in physics is expressed by a set of differential equations for the cur-

vature of the connection. Many discovery of physical laws in turn provide powerful

tools for mathematicians to understand many intrinsic structures of low dimensional

geometry and topology.

References of this course:

1. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-

Verlag, 1983.

2. N. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Wiley Clas-

sics Library Edition, New York. 1996.

3. D. Husemoller, Fiber Bundles, Graduate Texts in Math, Springer-Verlag, 1966

4. J. Milnor and J. Stasheff, Characteristic classes, Annals of Mathematic Studies

76, 1974.
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1 Manifolds and de Rham Cohomology

1.1 Differentiable manifolds

A locally Euclidean space M of dimension d is a Hausdorff topological space for which

each point has a neighborhood homeomorphic to an open subset of Euclidean space

Rd. That is, for any point x ∈M , there is a neighborhood U and a homeomorphism φ

from U to an open set in Rd.

Manifolds are locally Euclidean spaces with certain smooth structures so that the

basic calculus can be carried over.

Definition 1.1. A differentiable manifold M of dimension d is a Hausdorff topo-

logical space which is covered by countably many open set {Uα}α∈I , and for each Uα,

there exists a homeomorphism φα : Uα → Rd with φα(Uα) an open set in Rd, such that

φα ◦ φ−1
β : φβ(Uα ∩ Uβ) −→ φα(Uα ∩ Uβ) (1)

is a diffeomorphism. Such (Uα, φα) is called a coordinate chart, and A = {(Uα, φα)}
is an atlas on M which gives a differential structure on differentiable manifold M .

We call (M,A) a smooth manifold.

To understand this definition better, we recall some elementary calculus on Eu-

clidean spaces.

Recall that if f : U → R is a continuous function defined on an open set U , we say

that f is differentiable at x ∈ U if the limit

lim
t→0

f(x+ t) − f(x)

t

exists, is called the derivative of f at x, denoted by f ′(x). For a differentiable function

f on U , its derivative is also a function on U .

For an open set U ∈ Rd, a function f : U → R, we define its partial derivative along

each direction ei = (0, · · · , 1, · · · , 0) which is 1 at the ith position and 0 elsewhere

∂f

∂xi
(x) = lim

t→0

f(x+ tei) − f(x)

t
,
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which is called the ith partial derivative.

Let U ⊂ Rd be an open set, a function f : U → R is differentiable of class Ck

(where k ∈ N) if the partial derivatives of f , up to order k, exist and continuous. f is

smooth (or C∞) if f is differentiable of class Ck for all k > 0. A map f : U → Rn is

differentiable of class Ck if each component of f is Ck.

Note that, in (1), both φα(Uα ∩ Uβ) and φβ(Uα ∩ Uβ) are open sets on Rd. By

definition, φα ◦ φ−1
β is a diffeomorphism if and only if φα ◦ φ−1

β is smooth, and has

smooth inverse. This condition on φβ(Uα ∩ Uβ) is called the compatibility condition

for two coordinate charts (Uα, φα) and (Uβ, φβ).

Example 1.2. 1. (Rd, Id) is an atlas on Rd, which makes Rd a manifold. Similarly,

any open set U in Rd is a manifold.

2. The general linear group GL(n,R) is the set of all n × n matrices with non-zero

determinant, viewed as the open subset of Rn2

, is a smooth manifold.

3. Let V be a vector space, any choice of basis gives rise to a coordinate chart of V .

Two different bases give two compatible coordinate charts. In general, any linear

isomorphism from V to Rd defines a manifold structure on V . In particular,

complex d dimensional vector space Cd is a 2d dimensional manifold.

4. Let S2 be the unit sphere in R3. Let U0 = S2−{(0, 0, 1)}, Using the stereo-graphic

projection from the point {(0, 0, 1)} onto the xy plane, we can define a coordinate

chart on U0:

φ0(x, y, z) =
( x

1 − z
,

y

1 − z

)
.

Let U1 = S2 − {(0, 0,−1)}, Using the stereo-graphic projection from the point

{(0, 0,−1)} onto the xy plane, we get a coordinate chart (U1, φ1) with

φ0(x, y, z) =
( x

1 + z
,

y

1 + z

)
.

Now we need to check that these two coordinate charts are compatible:

(a) φ0(U0 ∩ U1) and φ1(U0 ∩ U1) are equal to R2 − {(0, 0)}, an open set in R2.
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(b) φ0 ◦ φ−1
1 : φ1(U0 ∩ U1) → φ0(U0 ∩ U1) is a diffeomorphism, one can easily

check that

φ0 ◦ φ−1
1 (x, y) =

( x

x2 + y2
,

y

x2 + y2

)
.

Similarly, any fixed length sphere in Rd+1 is a d-dimensional manifold.

5. (Real Projective space) Consider the space of all lines through the origin in

Rd+1, denoted by RPd. Note that a line through the origin is determined by an

equivalent class of non-zero vectors in Rd+1 where two non-zero vectors x1 and

x2 are equivalent if and only if x1 = tx2 for a non-zero t ∈ R. Hence. RPd

can be identified as the quotient space of Rd+1 − 0 by this equivalent relation.

Denote by [x] be the line through the non-zero vector x = (x0, x1, · · · , xd). For

each i = 0, · · · , d, consider the open subset of RPd:

Ui = {[x]|x = (x0, x1, · · · , xd) with xi 6= 0, }

which covers all of RPd. Define a map from Ui to Rd by

φi([x
0, x1, · · · , xd]) =

(x0

xi
, · · · , x

d

xi
)
.

We can check that {(Ui, φi)} are compatible coordinate charts, which make RPd

a d-dimensional manifold.

Similarly, the Complex Projective Space CPd, the space of all complex lines

through the original in Cd+1, is a 2d-dimensional manifold.

6. Let M and N be manifolds of dimension m and n, then their product M ×N is

a manifold of dimension m+ n.

A collection of {Uα} of open subsets of M is called a cover of M . A subset of the

collection {Uα} which still covers M is called a subcover. A refinement {Vβ} of the

cover {Uα} is a cover such that for each β there is an α with Vβ ⊂ Uα. A locally finite

cover {Uα} is a cover such that for any point x ∈ M there exists a neighborhood U of

x such that Uα ∩ U non-empty for only finitely many α.
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Remark 1.3. 1. Any atlas on a manifold has a locally finite refinement, as any

locally Euclidean space has this property.

2. Two atlas A and B are equivalent if A∪B is also atlas. Therefore, a differentiable

structure on M is really a choice of a equivalent class of atlas.

3. For any atlas A on M , take all the coordinate charts compatible with every chart

in A, this defines a maximal atlas containing A , actually, this is the unique

maximal atlas containing A.

In summary, a differential or smooth manifold is a Hausdorff topological space

M with an atlas A = {(Uα, φα)}. We call the choice of an atlas on M is a choice of

differential structure on M .

For a differential manifold M , we often just say that (U, φ) is a coordinate chart on

M rather than (U, φ) is a member of a specific atlas A, in any sense, it is a member

of the unique maximal atlas of the differential structure. In practical situation, we can

choose any convenient atlas as we want, as seen in the above examples.

Now we can carry over many concepts of calculus on Euclidean spaces to manifolds

using coordinate charts.

Definition 1.4. 1. f is a smooth function on M if f ◦ φ−1
α : φα(Uα) → R is a

C∞-function for any coordinate chart (Uα, φα) on M .

2. A continuous map f between two manifolds M and N is smooth if and only if for

every point x ∈M there are coordinate charts (U, φ) on M and (V,ψ) on N such

that x ∈ U , f(U) ⊂ V and

ψ ◦ f ◦ φ−1 : φ(U) → ψ(V )

is smooth.

Example 1.5. 1. The determinant function on GL(n,R) is a smooth function.

2. Let S2 be the unit sphere in R3, for any point (x, y, z) ∈ S2,

f(x, y, z) = z

is a smooth function, this is called the height function of S2.
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1.2 Directional derivatives and the chain rule

Let U be an open set in Rd, f : U → Rm is a smooth map, for any v ∈ Rd, we can

define the directional derivative of f along v at x ∈ U as

dvf(x) = lim
t→0

f(x+ tv) − f(x)

t
∈ Rm.

Lemma 1.6. Define df(x)(v) = dvf(x), then df(x) is a linear operator Rd → Rm.

The proof is left to readers as an exercise.

Theorem 1.7. Let U ⊂ Rd and V ⊂ Rm be open sets, f : U → Rm and g : V → Rn be

smooth functions with f(U) ⊂ V . Then g ◦ f : U → Rn is also smooth and

d(g ◦ f)(x) = dg(f(x)) ◦ df(x),

where ◦ on the right hand side means the composition of linear operators.

Proof. Use the standard basis of Euclidean space, we write the coordinates on Rd,

Rm and Rn to be (x1, · · · , xd), (y1, · · · , ym) and (z1, · · · , zn) respectively. Then the

directional derivative of f = (f1, · · · , fm), as a linear operator from Rd → Rm, can be

written as an m× d matrix:
[∂f i

∂xj
(x)

]
.

Similarly, for g = (g1, · · · , gn), the linear operator dg(f(x)) : Rm → Rn can be ex-

pressed by an n×m matrix of form

[∂gk

∂yi
(f(x))

]
,

and the linear operator d(g ◦ f)(x) : Rd → Rn can be written as

[∂(gk ◦ f)

∂xj
(x)

]
.

By the chain rule for partial derivatives, that is,

∂(gk ◦ f)

∂xj
=

d∑

i=1

∂gk

∂yi
∂f i

∂xj
,

we get the chain rule as matrix form, hence, as linear operators,

d(g ◦ f)(x) = dg(f(x)) ◦ df(x).
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1.3 Tangent space and cotangent space

For a smooth path in Rd, that is a smooth function γ : (−ǫ, ǫ) → Rd, the tangent vector

to γ at γ(0) is give by the limit definition:

γ′(0) = lim
t→0

γ(t) − γ(0)

t
∈ Rd.

For a point x in a smooth manifold M , how to define a tangent vector at x? We

know that if M sits inside a Euclidean space RN , we may take all possible smooth path

inside M , and use the limit definition to define the tangent vector to these paths as in

RN .

For example, take the 2-dimensional unit sphere S2 ⊂ R3, we get the tangent space

of S2 at x ∈ S2, denoted by TxS
2:

TxS
2 = {v ∈ R3|〈x, v〉 = 0.}

To show this claim, we take x ∈ S2 and a vector v ∈ R3 with 〈x, v〉 = 0, then

γ(t) =
x+ tv

‖x+ tv‖ for t ∈ (−ǫ, ǫ) is a smooth path in S2 through x.

Sometime, it is much convenient to have an intrinsic definition of tangent space

without resorting to some embedding in an Euclidean space. For this reason, we need

smooth paths inside a smooth manifold.

A smooth path γ : (−ǫ, ǫ) →M through x = γ(0), as a smooth map between these

two manifolds, we choose a coordinate chart (U, φ) with γ(−ǫ, ǫ) ⊂ U , then φ ◦ γ is a

smooth path in Rd, hence,

(φ ◦ γ)′(0) ∈ Rd

is well-defined.

For two smooth paths γ1 and γ2 through the same point x in M , we call that γ1

and γ2 are tangent at x if there is a coordinate chart (U, φ) such that

(φ ◦ γ1)
′(0) = (φ ◦ γ2)

′(0).

Exercise 1.8. Show that the tangency relation between two paths is an equivalence

relation on the set of all paths through x, and doesn’t depend on the choice of coordinate

charts on M .
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Definition 1.9. The tangent space of a smooth manifold M at x, denoted by TxM , is

defined to be the space of equivalent classes of smooth paths through x in M .

Proposition 1.10. TxM is a linear vector space of dimension d.

Proof. Choose a coordinate chart (U, φ) at x and define a map dφ(x) between TxM

and Rd as:

dφ(x)([γ]) = (φ ◦ γ)′(0).

By definition, dφ(x) is injective. For any v ∈ Rd, choose ǫ such that for any |t| < ǫ,

φ(x)+ tv is a path through φ(x) in φ(U), and φ−1(φ(x)+ tv) is a smooth path through

x then we can check that

dφ(x)([φ−1(φ(x) + tv)]) = v.

Hence, dφ(x) is a bijection. We can equip TxM with a unique vector space structure

such that the map dφ(x) is a linear isomorphism from TxM to Rd.

Though γ′(0) doesn’t make sense for a smooth path in a general manifold M from

the limit definition, sometimes, we still denote [γ] by γ′(0). This agrees with the natural

definition when M sits inside some Euclidean space.

Let f : M → N be a smooth map. To know the rate of change of f at x along a

smooth path, we need the differential of f at x ∈M , which is defined to be

df(x) : TxM → Tf(x)N.

[γ] 7→ [f ◦ γ].

Lemma 1.11. With the natural linear structures on tangent spaces TxM and Tf(x)N ,

df(x) is a linear map. Moreover, for two smooth maps f : M → N and g : N → K,

then

d(g ◦ f)(x) = dg(f(x)) ◦ df(x).

Proof. Choose coordinate charts (U, φ) and (V,ψ) at x and f(x) respectively such

that f(U) ⊂ V . The directional derivative of ψ ◦ f ◦φ−1, d(ψ ◦ f ◦φ−1)(φ(x)), is linear.
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The linear structures on TxM and Tf(x)N are obtained from the bijective linear maps

dφ(x) and dψ(f(x)). Hence, df(x) is a linear map. The second property follows from

the chain rule properties of the directional derivatives.

Let M and N be two smooth manifolds. For (x, y) ∈M ×N , we have

T(x,y)(M ×N) ∼= TxM ⊕ TyN. (2)

The proof of this claim is straight forward by choosing smooth paths inM×N such that

the projection to M or N is just the point x or y, together with dimension counting.

For a smooth function f : M → R, note that for any tangent vector [γ] ∈ TxM with

a representing path γ : [−e, ǫ] →M , we know that

df(x)([γ]) = [f ◦ γ] = (f ◦ γ)′(0) ∈ R.

The differential df(x) at x is a linear map: TxM → R. This motivates the definition of

cotangent space.

Definition 1.12. The cotangent space of M at x, denoted by T ∗
xM , is the space of all

linear maps from TxM to R. Elements of T ∗
xM are called cotangent vectors.

For any smooth function on M , df(x) is a cotangent vector at x. For a smooth map

f : M → N , the differential df(x) : TxM → Tf(x)N induces a dual map

df∗(x) : T ∗
f(x)N → T ∗M.

If g is a smooth function on N , dg(f(x)) is a cotangent vector at f(x) ∈ N , then

df∗(x)
(
dg(f(x))

)
= d(f ◦ g)(x),

as f ◦ g is a smooth function on M .

Sometimes, it is instructive to do local calculations in coordinates of a coordinate

chart, here we express tangent vector and cotangent vector in coordinates.

Let (U, φ) be a coordinate chart at x ∈M , with

φ = (φ1, · · · , φd) : U → Rd.
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Each component φi is a smooth function, this implies that dφi(x) ∈ T ∗
xM .

Recall that dφ(x) : TxM → Rd is a linear isomorphism. Take the standard basis

{e1, · · · , ed} for Rd, we denote by

∂

∂φi
(x) = (dφ(x))−1(ei).

We get a basis
{ ∂

∂φ1
(x), · · · , ∂

∂φd
(x)

}

for the tangent space TxM .

Proposition 1.13. {dφ1(x), · · · , dφd(x)} is a dual basis of T ∗
xM to the basis

{ ∂

∂φ1
(x), · · · , ∂

∂φd
(x)

}
.

Proof. Apply dφi(x) to element
∂

∂φi
(x), we get

dφi(x)
( ∂

∂φj
(x)

)
= dφi(x)

(
(dφ(x))−1(ej)

)

=
(
dφi(x) ◦ d(φ−1)(φ(x))

)
(ej)

= d(φi ◦ φ−1)(φ(x))(ej )

= limt→0
φi ◦ φ−1(φ(x) + tej) − φi(x)

t

= δij .

Exercise 1.14. 1. Assume that (Uα, φα) and (Uβ , φβ) are two compatible coordinate

charts at x. Show that the basis change is given by the Jacobian matrix of φα◦φ−1
β .

2. Express the tangent vector [γ] in TxM in terms of a basis from a coordinate chart.

1.4 Submanifolds

As our manifolds are locally Euclidean space, we know that, in Euclidean space Rd, a

Euclidean subspace can be written as a linear subspace like

{(x1, · · · , xk, 0, · · · , 0)|(x1, · · · , xk) ∈ Rk}.
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A submanifold is a subset which is locally of Euclidean subspace.

We begin with a submanifold with a Euclidean space.

Definition 1.15. Let Z be a subset of Rn. We call Z a smooth submanifold of dimen-

sion d if we can cover Z with domains of coordinate charts on Rn such that for each

chart
(
U, φ = (φ1, · · · , φn)

)

U ∩ Z = {x ∈ U |φd+1(x) = · · · = φn(x) = 0.}.

We have to check that a submanifold as defined above is indeed a manifold. Let

{Uα, φα)} be an atlas of Rn whose domains cover Z. Then A = {(Uα ∩ Z,ψα)} with

ψα = (φ1
α|Uα∩Z , · · · , φdα|Uα∩Z) is an atlas of Z which makes Z a differentiable manifold

with differential structure given by A.

Theorem 1.16. Let f : Rn → Rn−d be a smooth map and let Z = f−1(0). If df(z) is

onto for all z ∈ Z, then Z is a submanifold of dimension d.

Proof. Fix z ∈ Z. The kernel of df(z), denoted by Kz, is a d-dimensional linear

subspace of Rn. Choose a basis of Kz as v1, · · · , vd, with respect to this basis, write

the orthogonal projection π : Rn → Kz as

π(x) =

d∑

i=1

πi(x)vi.

Now we define a map φ : Rn → Rn by φ(x) = (π1(x), · · · , πd(x), f(x)). Then the

differential of φ : Rn → Rn is given by

dφ(z)(v) =
(
π1(v), · · · , πd(v), df(z)(v)

)
.

One can check that dφ(z) is a linear isomorphism. Apply the inverse function theorem,

there is an open set U in Rn with z ∈ U such that φ(U) is open and

φ|U U → φ(U)

is a diffeomorphism. This means that (U, φ) is a coordinate chart of Rn and

U ∩ Z = {x ∈ U |f(x) = (φd+1(x), · · · , φn(x)) = 0},

therefore, Z is a submanifold of Rn,in particular, Z is a manifold.
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Exercise 1.17. Show that the unit sphere Sd in Rd+1 is a smooth submanifold.

Definition 1.18. Let Z be a subset of a smooth manifold M of dimension n. We call

Z a submanifold of dimension d if for every point z ∈ Z, there is a coordinate chart

(U, φ) on M such that z ∈ U and

U ∩ Z = {y ∈ U : |ψd+1(y) = · · · = ψn(y) = 0}.

Find an atlas of Z which makes Z a smooth manifold and show that the inclusion

map iZ is smooth.

Theorem 1.19. Let f be a smooth map between two smooth manifolds M and N of

dimension m and n respectively, with m > n. Let n ∈ N and Z = f−1(n). If df(z) is

onto for all z in Z, then Z is a submanifold of M and the image of d(iZ) at z ∈ Z is

precise the kernel of df(z).

1.5 Vector fields and Lie bracket

Definition 1.20. A vector field is an assignment of a tangent vector X(x) ∈ TxM to

every point x ∈M . A vector field {X(x)}x∈M is smooth if, for an atlas {Uα, φα}

X(x) =
d∑

i=1

Xi
α(x)

∂

∂φiα
(x),

then each component Xi
α(x) is a smooth function on Uα.

Proposition 1.21. A vector field is smooth if and only if, for any smooth function f

on an open set V ⊂M ,

df(x)(X(x)) =< df(x),X(x) >

is a smooth function on V . For a smooth vector field X and a smooth function f on

M ,

(fX)(x) = f(x)X(x)

is also a smooth vector field.

Proof. Note that Xi
α(x) = dφiα(x)(X(x)) for any coordinate functions

φα = (φ1
α, · · · , φdα). This proposition follows from various definitions.
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Let g be a smooth function on M and X be a smooth vector field, there is a smooth

function on M denoted by X(f), which is given by

X(f)(x) = df(x)(X(x)),

which is really the contraction between the tangent vector defined by X and the cotan-

gent vector defined by the differential df of f .

We have two different operations involving a smooth vector field and a smooth

function: one is the multiplication of a smooth function to a vector field to get a new

vector field, and the other is the contraction of a vector field and a differential by

their duality to get a new smooth function. This latter contraction can be seen as an

operation of X on the space of smooth functions. Hence a smooth vector field X define

a map on the space of all smooth functions denoted by C∞(M).

Lemma 1.22. For a smooth vector field X on M , the contraction defined above is a

R-linear derivation on C∞(M), that is, for two smooth functions f and g, and a real

number a:

X(f + ag) = X(f) + aX(g),

X(fg) = X(f)g + fX(g).

This Lemma follows from the the Leibnitz rule for partial derivatives.

There is another important concept on the space of all smooth vector fields, which

measures the non-commutativity of two vector fields viewed as two derivations on

C∞(M). This is the Lie bracket.

Let X and Y be two smooth vector fields on M , we can define a new vector field

[X,Y ](f) = X(Y (f)) − Y (X(f)),

for any smooth function f on M .

Proposition 1.23. 1. [X,Y ] is a smooth vector field.

2. If f and g are smooth functions on M , then [fX, gY ] = fg[X,Y ] + fX(g)Y.

3. [X,Y ] = −[Y,X].
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4. [[X,Y ], Z] + [[Y,X], Z] + [[Z,X], Y ] = 0 for smooth vector fields X, Y and Z on

M .

Proof. We prove these properties by using local coordinate charts. For any coordinate

chart (U, φ) with φ = (φ1, · · · , φd), we can write

X|U =
d∑

i=1

Xi ∂

∂φi
, Y |U =

d∑

j=1

Y j ∂

∂φj
,

where {Xi} and {Y j} are smooth functions on U , Applying [X,Y ] to the coordinate

functions, we get

[X,Y ](φi) = X(Y (φi)) − Y (X(φi))

= X(Y i) − Y (Xi)

=
∑d

j=1

(
Xj ∂Y

i

∂φj
− Y j ∂X

i

∂φj
)
,

which is a smooth function on U . Hence,

[X,Y ]|U =

d∑

i=1

(
d∑

j=1

(Xj ∂Y
i

∂φj
− Y j ∂X

i

∂φj
)
) ∂

∂φi

is a smooth vector field on M . One can show (b)-(d) by using this local expression.

Remark 1.24. A vector space with a bilinear form

[·, ·] : V × V → V

satisfying properties (c) and (d) of Proposition 1.23 is called a Lie algebra.

1.6 Tangent bundle and cotangent bundle

Let M be a d-dimensional smooth manifold. For x in M , TxM and T ∗
xM , the tangent

and cotangent spaces at x are two d-dimensional linear vector spaces.

Denote

TM =
⋃

x∈M

TxM.

We can now list a few properties about this space.
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1. There is a projection map π : TM → M which sends (x, vx) to x, where vx is a

tangent vector at x.

2. Let {(Uα, φα)} be an atlas for M , then for any x ∈ Uα, the differential

dφα(x) : TxM → Rd is a linear isomorphism. From the standard basis of Rd,

we have a basis

{ ∂

∂φ1
α

(x), · · · , ∂

∂φdα
(x)}

of TxM for any x in Uα. We can define

φ̃α π−1(Uα) ∼= Uα × Rd

∑d
i=1 a

i(x)
∂

∂φiα
(x) 7→ (x, a1, · · · ad).

This is called the local trivialization of TM over Uα. Note that TM =
⋃

α π
−1(Uα)

and {
(
π−1(Uα), φ̃α

)
} is an atlas on TM , hence, TM is a smooth manifold.

This is called the tangent bundle of M . Similarly,

T ∗M =
⋃

x∈M

T ∗
xM

has a smooth manifold structure, T ∗M is called the cotangent bundle of M .

The main purpose of this course is to study the following object.

Definition 1.25. A rank n vector bundle E over M is a quadruple (E,M, π,Rn) such

that

1. π : E →M is a smooth map.

2. For any x in M , π−1(x) ∼= Rn is called the fiber over x.

3. There is an atlas {9Uα, φα)} on M , such that

π−1(Uα) ∼= Uα × Rn,

in a fiber preserving way.

A smooth map s : M → E such that π ◦ s = identity is called a smooth section of the

vector bundle (E,M, π,Rn).
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The tangent bundle TM is a rank d vector bundle over M and a vector field is a

section of the tangent bundle. Similarly, the differential of a smooth function defines a

section of the cotangent bundle, sections of cotangent bundle are also called differential

1-forms on M .

1.7 The exterior algebra, wedge and contraction operations

Let V be a d-dimensional vector space over R, a k-linear map

ω : V × V × · · · × V
︸ ︷︷ ︸

k

→ R

which is linear in each factor of k-copies of V . We call that ω is totally anti-symmetric

if

ω(v1, · · · , vi, vi+1, · · · , vk) = −ω(v1, · · · , vi+1, vi · · · , vk) (3)

for all v1, · · · , vk and any 1 ≤ i ≤ k − 1.

Lemma 1.26. Let ω be a totally, anti-symmetric, k-multilinear map on V , then, for

v1, · · · , vk ∈ V , we have

1. ω(v1, · · · , v, v, · · · , vk) = 0.

2. If σ ∈ Sk is a permutation of k letters, then

ω(v1, · · · , vi, · · · , vk) = sgn(σ)ω(vσ(1), · · · , vσ(i), · · · , vσ(k))

where sgn(σ) is the sign of the permutation σ.

Denote the vector space of all k-linear, totally anti-symmetric maps by Λk(V ∗),

whose element is called a k-form. As a convention, we take Λ0(V ∗) = R. Obviously,

Λk(V ∗) = 0 for all k > d.

Definition 1.27. The wedge product ∧ : Λp(V ∗) × Λq(V ∗) → Λp+q(V ∗) is defined as

follows: if ω ∈ Λp(V ∗) and ρ ∈ Λq(V ∗), then

ω ∧ ρ(v1, · · · , vp+q)

=
1

p!q!

∑

σ∈Sp+q

sgn(σ)ω(vσ(1), · · · , vσ(p))ρ(vσ(p+1), · · · , vσ(p+q)).
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for p+ q elements v1, · · · , vp+q in V .

Exercise 1.28. 1. Show that
(
Λ(V ∗) =

⊕d
k=1 Λk(V ∗),∧

)
is an associative algebra,

which is called the exterior algebra of V ∗.

2. Let α1, · · · , αk be elements of V ∗. Show that

(
α1 ∧ · · · ∧ αk

)
(v1, · · · , vk)

=
∑

σ∈Sk
sgn(σ)α1(vσ(1)) · · ·αk(vσ(k))

3. Choose a basis {v1, · · · , vd} for V , whose dual basis is denoted by {α1, · · · , αd}.
Show that

{αi1 ∧ · · · ∧ αik |1 ≤ i1 < · · · < ik ≤ d.}

is a basis for Λk(V ∗). Hence, Λ(V ∗) is a 2d-dimensional linear space.

4. If ω ∈ Λp(V ∗) and ρ ∈ Λq(V ∗), then

ω ∧ ρ = (−1)pqρ ∧ ω.

Definition 1.29. Given ω ∈ Λk(V ∗), and v ∈ V , the contraction of ω and v is the

(k − 1)-form, defined by

ıv(ω)(v1, · · · , vk−1) = ω(v, v1, · · · , vk−1).

The following formula relates the contraction and the wedge product.

Lemma 1.30. For ω ∈ Λp(V ∗), ρ ∈ Λq(V ∗) and v ∈ V , then

ıv(ω ∧ ρ) = ıv(ω) ∧ ρ+ (−1)pω ∧ ıv(ρ).

1.8 Differential form and the exterior derivative

Definition 1.31. Let M be a smooth manifold of dimension n. A smooth differential

form k-form is an element of ΛkT ∗
xM for any x ∈ M , which depends on x smoothly,

that is, ω is a smooth section of the exterior bundle Λk(T ∗M) of power k, where

Λk(T ∗M) =
⋃

x∈M

Λk(T ∗
xM).
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Note that for a coordinate chart (Uα, φα),

Λk(T ∗M)|Uα =
⋃

x∈Uα

Λk(T ∗
xM)

has a trivialization given by the basis

{dφi1α ∧ · · · ∧ dφikα |1 ≤ i1 < · · · < ik ≤ n.}

In terms of this basis, any differential k-form, when restricted to Uα, can be written as

ω =
∑

1≤i1<···<ik≤n

ωαi1···ikdφ
i1
α ∧ · · · dφikα ,

where ωαi1···ik is a smooth function on Uα.

From the definition, we see that a differential form defines a k-linear map on the

space of sections of the tangent bundle TM . For k smooth vector fields X1, · · · ,Xk, a

smooth differential k-form ω gives rise to a map

(X1, · · · ,Xk) 7→ ω(X1, · · · ,Xk),

with ω(X1, · · · ,Xk) is a smooth function onM . The proof of this’ claim can be obtained

by using the local expressions.

For example, on the Euclidean space R3 with the usual coordinate system {x, y, z},
a smooth differential 0-form is just a smooth function of x, y, and z; a smooth 1-form,

2-form and 3-form can be written respectively as

f1(x, y, z)dx + f2(x, y, z)dy + f3(x, y, z)dz;

g1(x, y, z)dx ∧ dy + g2(x, y, z)dx ∧ dz + g3(x, y, z)dy ∧ dz;

h(x, y, z)dx ∧ dy ∧ dz.

Here fi, gi and h are smooth functions.

Exercise 1.32. 1. In the local expression of a differential k-form, the coefficient

ωαi1···ik is totally anti-symmetric in their indices.
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2. On the overlap of two coordinate charts (Uα, φα) and (Uβ, φα), establish the rela-

tionship between the coefficients of local expression of ω under the two coordinate

charts.

Denote Ωk(M) the set of all smooth differentiable k−forms. Note that

Ω0(M) = C∞(M), and for any f ∈ Ω0(M), df ∈ Ω1(M). Hence, we have a linear

differential operator d : Ω0(M) → Ω1(M) satisfying the Leibnitz rule:

d(fg) = (df)g + f(dg)

for any two smooth functions f and g. This differential operator can be generalized

to act on any k-forms, which is one of the most important operators in differential

geometry.

Theorem 1.33. There exists a unique linear map

d : Ωk(M) → Ωk+1(M)

for all k = 0, · · · , n− 1 satisfying

1. For k = 0, d is the usual differential operator acting on smooth functions.

2. d2 = 0.

3. d(ω ∧ ρ) = (dω) ∧ ρ+ (−1)pω ∧ (dρ) for any p-form ω and q-form ρ.

This operator is called the exterior derivative on M .

Proof. Define d recursively. Suppose that such linear operator d exists for p ≤ k. Let

(U, φ) with φ = (x1, · · · , xn) be a coordinate chart. For ω ∈ Ωk+1(M), we can express

ω as

ω =

n∑

i=1

ωi ∧ dxi

with ωi = (−1)kı ∂

∂xi
ω is a k-form, obtained from the contraction of ω and

∂

∂xi
. We

now define

dω =

n∑

i=1

dωi ∧ dxi.
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We need to check that this definition is independent of the choice of coordinate

chart, that is, on the overlap of two charts (Uα, φα) and (Uβ , φβ), we will show that

n∑

i=1

dωαi ∧ dxiα =
n∑

i=1

dωβi ∧ dxiβ. (4)

Note that on Uα ∩ Uβ , we have

dxiβ =

n∑

j=1

∂xiβ

∂xjα
dxjα, (5)

∂

∂xiα
=

n∑

j=1

∂xjβ
∂xiα

∂

∂xjβ
,

which imply that

ωαi =

n∑

j=1

∂xjβ
∂xiα

ωβj .

From this, we get

dωαi =
n∑

j=1

n∑

l=1

∂2xjβ
∂xiαdx

l
α

dxlαω
β
j +

n∑

j=1

∂xjβ
∂xiα

dωβj .

One can check (4) by direct calculation:

∑n
i=1 dω

α
i ∧ dxiα

=
∑n

i,j,l=1

∂2xjβ
∂xiαdx

l
α

dxlα ∧ ωβj ∧ dxiα +

n∑

i,j=1

∂xjβ
∂xiα

dωβj ∧ dxiα.

Notet that
∂2xjβ
∂xiαdx

l
α

is symmetric for the indices i and l, while dxlα ∧ ωβj ∧ dxiα is anti-

symmetric for the indices i and j, hence the first term vanishes, together with (5), we

obtain (4).

The claims 2 and 3 are left as an exercise.

Another local expression of d is also useful in some cases. For a smooth differential

k-form ω on M , let (U, φ) with φ = (x1, · · · , xn) be a coordinate chart on M , we can

write ω as

ω =
∑

i1,··· ,ik

1

k!
ωi1···ikdx

i1 ∧ · · · ∧ dxik ,
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where ωi1···ik is a smooth function on U , then the exterior differential d on ω, in the

chart (U, φ) can be written as

dω =
∑

i1,··· ,ik

n∑

i=1

1

k!

∂ωi1···ik
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxik . (6)

Remark 1.34. Using the Lie derivatives on differential forms, which will be introduced

later in the course, one can have a global expression of d by evaluating on vector fields.

For a k-form ω, dω can be determined by evaluating on k+1 vector fields X1, · · · ,Xk+1

as follows:

dω(X1, · · · ,Xk+1)

=
1

k + 1

(
k+1∑

i=1

(−1)i+1Xi(ω(X1, · · · , X̂i, · · · ,Xk+1))

+
∑

i<j(−1)i+jω([Xi,Xj ],X1, · · · , X̂i, · · · , X̂j , · · · ,Xk+1)
)
.

Here the circumflex over a term means that it is to be omitted.

1.9 De Rham cohomology

We first introduce a concept from homological algebra, which a complex and its differ-

entials. A cochain complex is a sequence of linear maps

· · · → Ci−1
di−1−→ Ci

di−→ Ci+1
di+1−→→ · · ·

such that di ◦ di−1 = 0 for all i. From any cochain complex (Ci, di), we know that the

image of map di−1 is contained in the kernel of map di+1, the quotient space of the

kernel of di by the subspace of the image of map di−1 is called the i-th cohomology

group of the cochain complex (Ci, di).

From Theorem 1.33, we know that we have a cochain complex:

0 → Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ · · · → Ωd−1(M)

d−→ Ωd(M) → 0.

Definition 1.35. A smooth differential k-form ω on a smooth manifold M is called

closed if dω = 0, and called exact if there is a (k − 1) form η such that ω = dη. The
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quotient space of the real vector space of closed k-forms on M modulo the subspace of

all exact k-forms is called the k-th de Rham cohomology group of M :

Hk(M,R) =
{closed k-forms}
{exact k-forms} .

From Theorem 1.33, the wedge product induces a product structure on the coho-

mology group, which is called the cup product:

∪ : H i(M,R) ×Hj(M,R) → H i+j(M,R). (7)

This endows the cohomology H∗(M,R) = ⊕d
k=0H

k(M,R) with a ring structure, which

is called the cohomology ring of M .

Let f : M → N be a smooth map, the dull of the differential map df defines a map

df∗(x) : T ∗
f(x)N → T ∗

xM.

Here df∗(x)(ω)(X) = ω(df(x)(X)) for ω ∈ T ∗
f(x)N and X ∈ TxM . This induces an

algebra homomorphism on the exterior algebras, denoted by f∗:

f∗ : Λ(T ∗
f(x)N) → Λ(T ∗

xM).

For any differential form ω on N , we can apply f∗ to pull ω back to get a differential

form f∗(ω) on M . From this definition, we have

f∗(ω)
(
X1, · · · ,Xk

)
= ω

(
df(X1), · · · , df(Xk)

)

for ω ∈ Ωk(N) and for vector fields X1, · · · ,Xk on M .

Proposition 1.36. Let f : M → N be a smooth map. Then

1. d(f∗(ω)) = f∗(dω) for a differential form ω on N .

2. f∗(ω ∧ ρ) = f∗(ω) ∧ f∗(ρ) for two differential forms ω and ρ on N .

Proof. The proof can be obtained by local calculations. To prove that d commutes

with f∗, we choose a coordinate chart (U, φ) with φ = (x1, · · · , xd) around f(x) ∈ N

and a neighborhood V of x such that f(V ) ⊂ U . Write a k-form ω as

ω =
∑

i1,··· ,ik

1

k!
ωi1···ikdx

i1 ∧ · · · ∧ dxik .
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Here ωi1···ik is a smooth function on U . Then

f∗(ω) =
∑

i1,··· ,ik

1

k!
ωi1···ik ◦ fd(xi1 ◦ f) ∧ · · · ∧ d(xik ◦ f).

Applying the exterior derivative, we obtain over V

d
(
f∗(ω)

)

=
∑

i1,··· ,ik
1
k!d

(
ωi1···ik ◦ f

)
d(xi1 ◦ f) ∧ · · · ∧ d(xik ◦ f)

=
∑

i1,··· ,ik
1
k!f

∗
(
ωi1···ikdx

i1 ∧ · · · ∧ dxik
)

= f∗(dω).

This calculation also shows that the pull-back map f∗ is an algebra homomorphism

on the spaces of differential forms with the wedge product as the product structure.

Corollary 1.37. Let f : M → N be a smooth map. Then the pull-back by f induces a

ring homomorphism on the de Rham cohomology rings of N and M .
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2 Lie Groups and Lie Algebras

2.1 Lie groups and examples

Definition 2.1. A Lie Group G is a smooth manifold with a group structure such

that the map G×G→ G defined by (g1, g1) 7→ g1g
−1
2 is a smooth map. A Lie subgroup

H of a Lie group G is a Lie group and a submanifold of G such that the inclusion

i : H → G is a group homomorphism, if H is a closed subset of G, then H is called a

closed Lie subgroup.

By the definition and the properties of smooth maps, for a Lie group, the group mul-

tiplication φ : G×G → G where φ(g, h) = gh and the inverse i : G → G (i(g) = g−1),

are smooth maps.

Example 2.2. 1. The Euclidean space Rn is a Lie group under vector addition.

2. The non-zero complex numbers C∗ forms a Lie group under multiplication. The

unit circle S1 ⊂ C∗ is a Lie subgroup of C∗.

3. The product G × H of two Lie groups is a Lie group with the product smooth

manifold structure and the direct group product structure.

4. The General Linear Group GL(n,R) of all n×n matrices over R of non-zero

determinant with matrix multiplication is a Lie group of dimension n2, the map in

the Definition 2.1, which is given by rational functions of the natural coordinates,

is smooth. Similarly, the complex general linear group GL(nC) of all n× n

matrices over C of non-zero determinant is a Lie group of dimension 2n2.

5. The group of affine motions of Rn is GL(n,R) × Rn with the group structure

(A1, v1)(A2, v2) = (A1A2, A1v2 + v1)

is a Lie group.

6. The Orthogonal Group O(n,R) is the group of all linear transformations of

Rn which preserve the usual inner product on Rn. In other words,

O(n,R) = {A ∈ GL(n,R)|AAt = I.}
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is a closed subgroup of GL(n,R), here we denote by At the transpose of A, and I

is the identity matrix. We can identify GL(n,R) with an open subset of Rn2

by

writing down the rows one after the other. Define a smooth map f : Rn2 → Rn2

by

f(A) = AAt−I, then O(n,R) = f−1(0). Note that AAt−I is a symmetric matrix.

Let S be the linear subspace of Rn2

corresponding to the set of all symmetric

matrices, which can be identified with a Euclidean space Rd where d =
n(n+ 1)

2
.

Then f is a smooth map from Rn2

to Rd. Look at the derivative of f at a matrix

A, we have

df(A)(B) = BAt +ABt.

For any symmetric matrix B, df(A)(1
2BA) = B for A ∈ O(n,R). This implies

that df(A) : Rn2 → Rd is onto for any A ∈ O(n,R). Therefore O(n,R) is a Lie

subgroup of GL(n,R) of dimension n2 − d =
n(n− 1)

2
by Theorem 1.19.

7. Another important example is the Unitary Group U(n), which consists of ma-

trix A ∈ GL(n,C) with A∗A = ĀtA = I. Here the overline indicates complex

conjugation in each entry of the matrix. Using the similar function as in the above

example, one can show that U(n) is a Lie subgroup of GL(n,C) of dimension n2.

Note that The determinant function on U(n) is a map det : U(n) → S1 = U(1).

The special unitary group

SU(n) = {A ∈ U(n)|det(A) = 1.}

is a Lie subgroup of U(n) of dimension n2 − 1. Similarly, we have the special

linear groups SL(n,R) and SL(n,C), the special orthogonal group SO(n).

8. Note that S1 ∼= SO(2) given by eiθ 7→




cos θ sin θ

− sin θ cos θ



 .

2.2 Left invariant vector fields and Lie algebras

Lie group has many nice properties, which arise from the group multiplication by a

fixed element.
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Definition 2.3. Fix an element g in a Lie group G. The left translation Lg by g and

right translation Rg by g are the diffeomorphism maps G→ G defined by

Lg(h) = gh, Rg(h) = hg

for all h ∈ G.

The left translation by g ∈ G, being a diffeomorphism, moves a neighborhood Uh

around h to Lg(Uh), which is a neighborhood of gh. Obviously, Lg moves the tangent

space Th(G) to the tangent space Tgh(G), this is just the differential of Lg:

dLg(h) : Th(G) −→ Tgh(G).

Let e denote the identity element. Then dLg(e) defines a linear isomorphism between

Te(G) and Tg(G).

Definition 2.4. A vector field X on G is called left invariant if X(g) = dLg(e)(X(e)).

A left invariant vector field is determined by its value at e.

The set of all left invariant vector fields on G will be denoted by the lowercase

German letter g, which is a real vector space isomorphic to the tangent space of G at

e.

Proposition 2.5. Let G be a Lie group, and g the sets of left invariant vector fields.

1. Left invariant vector fields are smooth vector fields.

2. Let X,Y be two left invariant vector fields on G, then their Lie bracket [X,Y ] is

also a left invariant vector field, this gives g a Lie algebra structure.

Recall that a Lie algebra g is a real vector space with a bilinear form [ , ] : g×g → g

(called the bracket) such that for all X,Y,Z ∈ g,

1. [X,Y ] = −[Y,X], that is, [ , ] is anti-commutative.

2. [[X,Y ], Z]+[[Y,Z],X]+[[Z,X], Y ] = 0, this is the Jacobi identity for the bracket.
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Proof. Note that for a left invariant vector field X and any smooth function f on G

(Xf)(g) = < X(g), df(g) >

= < dLg(X(e)), df(g) >

= < X(e), dL∗
g

(
df(g)

)
>

= < X(e), d(f ◦ Lg)(e) >,

we only need to show that the function g 7→< X(e), d(f ◦Lg)(e) > is a smooth function.

The above calculation tells us that for a left invariant vector field X and a smooth

function f , then

(Xf) ◦ Lg = X(f ◦ Lg).

Denote by φ the group multiplication, i1e and i2g the maps of G→ G×G defined by

i1e(g) = (g, e), i2g(h) = (g, h).

Let Y be any smooth vector field on G such that Y (e) = X(e), then
(
(0, Y )(f ◦φ)

)
is a

smooth function on G×G, hence,
(
(0, Y )(f ◦ φ)

)
◦ i1e is a smooth function on G. Now

we can deduce that

g 7→ < X(e), d(f ◦ Lg)(e) >

= X(e)
(
f ◦ φ ◦ i2g

)

= Y (e)
(
f ◦ φ ◦ i2g

)

= < (0, Y )(g, e), d(f ◦ φ) >

= [(0, Y )(f ◦ φ)] ◦ i1e(g)

is a smooth function. Let X and Y be two left invariant vector fields on G, we need to

show that

dLg([X,Y ](e)) = [X,Y ](g).
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By evaluating on any smooth function f on G, we have

dLg([X,Y ](e))(f) = [X,Y ](e)(f ◦ Lg)

= X(e)(Y (f ◦ Lg)) − Y (e)(X(f ◦ Lg))

= X(e)(Y (f) ◦ Lg) − Y (e)(X(f) ◦ Lg)

= dLg(X(e))(Y f) − dLgY (e)(Xf)

= X(g)(Y (f)) − Y (g)(Xf)

=
(
[X,Y ](g)

)
(f).

This shows that [X,Y ] is a left invariant vector field on G.

Definition 2.6. We define the Lie algebra of a Lie group G to the Lie algebra g of the

left invariant vector fields on G.

The Lie algebra Lie(G) of the Lie group G can be taken as the tangent space of G

at the identity e, as a real vector space, with the Lie bracket given by the Lie bracket

of left invariant vector fields. If H is a Lie subgroup of G, then Lie(H) ⊂ Lie(G) is a

Lie subalgebra.

Example 2.7. 1. Lie(Rn): as a vector space, Lie(Rn) ∼= Rn. The left invariant

vector field determined by v ∈ Rn is the constant vector field. The Lie bracket of

two such constant vector fields is 0 by direct calculation.

2. Lie(GL(n,R)): Denote by gl(n,R) be the set of all n × n real matrices, which is

a real vector space of dimension n2 with the addition and scalar multiplications

by components. Note that gl(n,R) is a Lie algebra with the Lie bracket given by

[A,B] = AB −BA.

Then GL(n,R) is an open set of gl(n,R). Hence, there is a linear isomorphism

Lie(GL(n,R))
α−→gl(n,R).

We now show that α is a Lie algebra homomorphism, that is,

α([X,Y ]) = [α(X), α(Y )]
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for X,Y ∈ Lie(GL(n,R)).

Let xij be the coordinate function on gl(n,R) assigning to each matrix its ij-th

entry. This also gives a coordinate system on GL(n,Rn), and

(xij ◦ Lg)(h) = xij(gh) =
∑

k

xik(g)xkj(h).

For a left invariant vector field X, the smooth function X(xij) can be written as

X(xij)(g) = X(e)(xij ◦ Lg)

=
∑

k xik(g)X(e)
(
xkj

)

=
∑

k xik(g)xkj
(
α(X)

)
.

In particular, X(xij)(e) = xij(α(X)), and

xij
(
α([X,Y ])

)
= [X,Y ](e)(xij)

= X(e)
(
Y (xij)

)
− Y (e)

(
X(xij)

)

=
∑

k{xik(α(X))xkj(α(Y )) − xik(α(Y ))xkj(α(X))}

= xij([α(X), α(Y )]).

Therefore, we obtain the Lie algebra isomorphism Lie(GL(n,R)) ∼= gl(n,R).

Similarly, we have Lie(GL(n,C)) ∼= gl(n,C).

3. Lie(O(n,R)) is a Lie subalgebra of gl(n,R), consists of skew-symmetric matrices

{B ∈ gl(n,R)|B +Bt = 0.}

To prove this claim, we only to study the tangent space of O(n,R) at the identity

matrix. Let At be a smooth path in O(n,R) through the identity matrix at t = 0,

thought as a smooth path in Euclidean space gl(n,R) ∼= Rn2

, we can calculate the

tangent vector of At by the limit definition, write
dA

dt
(0) = B, then differentiating

AtA
t
t = I, we get

dA

dt
(0) +

dAt

dt
(0) = 0.

That is, B is a skew-symmetric matrix. By the same argument, we have
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(a) Lie(U(n)) = {B ∈ gl(n,C)|B + B̄t = 0.} consists of all skew-hermitian

matrices.

(b) Lie(SL(n,R)) = {B ∈ gl(n,R)|trace(B) = 0.} consists of all traceless real

matrices.

(c) Lie(SL(n,C)) consists of all traceless complex matrices.

4. Let V be a n-dimensional real vector space. The set of all linear operators on V

is denoted by End(V ) which becomes a Lie algebra if we set the Lie bracket by

[L1, L2] = L1 ◦ L2 − L2 ◦ L1,

for two linear operators L1 and L2. The Automorphism group

Aut(V ) ⊂ End(V ) is the subset of all invertible linear operators on V . Then

Aut(V ) is a Lie group with its Lie algebra End(V ).

For d-dimensional Lie algebra g, if we choose a basis of g to be {X1, · · · ,Xd}, then

the Lie bracket of g is defined by constant {ckij |0 ≤ i, j, k ≤ d} such that

[Xi,Xj ] = ckijXk (8)

These constants {ckij} are called the structure constant of g with respect to the basis

{Xi}. By the anti-commutativity and Jacobi identity, the structure constants satisfy

ckij + ckji = 0,

∑

l(c
l
ijc

m
lk + cljkc

m
li + clkic

m
lj ) = 0.

2.3 Exponential map and the Adjoint representation

Vector fields are also intimately related to flows on manifolds. By local theory of

ordinary differential equations, there exists (at least locally) a unique solution to an

ordinary differential equation with initial condition. Therefore, a smooth vector field

generates a local flow on M .

Definition 2.8. A local flow Φ on M is a family of smooth maps

{Φα : (−ǫα, ǫα) × Vα → Uα|ǫα > 0}α∈I
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such that

1. {Vα} and {Uα} are open covers of M , and Vα ⊂ Uα;

2. Φα and Φβ agree on their common domain;

3. Φα(0, ·) : Vα → Uα is the inclusion map;

4. Φα(t1 + t2, ·) = Φα(t1, ·) ◦ Φα(t2, ·) whenever both sides are well-defined.

We call that a local flow Φ is generated by X, if the smooth path Φα(t, x) (where

x ∈ Vα and −ǫα < t < ǫα) represents the tangent vector X(x) ∈ TxM , X is called the

infinitesimal generator of Φ.

The inclusion map on the domains of local flow defines a partial order on the set

of local flows on M , given a local flow, there is a unique maximal local flow on M

containing Φ. There is a one to one correspondence between maximal local flow on M

and vector fields on M giving by the infinitesimal generator of flow.

Definition 2.9. A global flow Φ on M is a smooth map Φ : R ×M →M such that

1. Φ(0, ·) = IdM ;

2. Φ(t1 + t2, ·) = Φ(t1, ·) ◦ Φ(t2, ·) for any t1, t2 in R.

A global flow defines a 1-parameter diffeomorphism groups of M .

Proposition 2.10. For a left invariant vector field X ∈ g on a Lie group, the maximal

local flow generated by X always admits a global flow ΦX .

Proof. Choose a local flow Φe : (−ǫ, ǫ) × Ve → Ue around e ∈ G generated by X,

where Ve ⊂ Ue are open neighborhood of e. As X is left invariant, for any g ∈ G,

Φg(t, h) = Lg
(
Φe(t, Lg−1(h)

)
, for any h ∈ Lg(Ve)

defines a local flow around g generated by X. Direct calculation shows that these

local flow can be fit together to get a local flow of form

Φ : (−ǫ, ǫ) ×G→ G.
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Now write Φ(t, ·) as Φt : G → G. Using the multiplicativity of local flows, we can

extend it to a global flow as follows. For t ∈ R, choose k ∈ Z and s ∈ (−ǫ/2, ǫ/2) such

that t = s+ k · ǫ2 . Then

Φ(t, g) =







Φǫ/2 ◦ · · · ◦ Φǫ/2 ◦ Φs(g), k > 0

Φs(g), k = 0

Φ−ǫ/2 ◦ · · · ◦ Φ−ǫ/2 ◦ Φs(g), k < 0

is a well-defined global flow on G.

In the above proof, we also established that the global flow ΦX generated by X ∈ g

satisfies

Lg ◦ ΦX(t, ·) = ΦX(t, ·) ◦ Lg,

from which we deduce

ΦX
t1+t2(e) = ΦX

t2 ◦ LΦX
t1

(e)(e) = ΦX
t1 (e) · Φ

X
t2 (e).

Definition 2.11. Let ΦX : R ×G→ G be the global flow generated by a left invariant

vector field X ∈ g. Then exp(tX) = ΦX(t, e) is a 1-parameter subgroup of G. The map

exp(X) : g → G is called the exponential map.

Example 2.12. The exponential map for GL(n,C) is given by the exponentiation of

matrices, that is, for A ∈ gl(n,C),

exp(A) = I +A+
A2

2!
+ · · · + An

n!
+ · · · . (9)

We need to show that the right hand side of (9), denoted by eA, converges and

{t → etA} is the unique 1-parameter subgroup of GL(n,C) whose tangent vector at

0 is A. For any bounded domain in gl(n,C), the norm of A, given by the maximum

of entries of A, is bounded. This implies that eA converges uniformly for A in this

bounded domain.

One can establish the following properties for eA:

1. det(eA) = etraceA.
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2. eA+B = eAeB .

Similarly, for a real or complex vector space V , the exponential map

exp : End(V ) −→ Aut(V )

is given by

exp(L) = 1 + L+
L2

2!
+ · · · + Ln

n!
+ · · · (10)

where Ln means the n-times of composition of L with itself.

Note that the differential of the exponential map at 0 ∈ g, d(exp)(0) : g → TeG ∼= g

is the identity map, so exp gives a diffeomorphism of a neighborhood of 0 in g onto

a neighborhood of e in G. It is convenient to give an atlas on a Lie group by this

exponential map and the left translations of Lie group elements.

The homomorphism between two Lie groups and its differential at identity is related

by the exponential map as in the following proposition.

Proposition 2.13. Let φ : H → G be a homomorphism of Lie groups. Then we have

the following commutative diagram:

H
φ // G

h

exp

OO

dφ // g

exp

OO

Proof. For any X ∈ h, then exp(tX) is the 1-parameter subgroup of H generated by

X. As φ is a group homomorphism, φ(exp(tX)) is also a 1-parameter subgroup of G,

the tangent vector at t = 0 is given by dφ(e)([exp(tX)]) at t = 0, the tangent vector of

[exp(tX)] at t = 0 is X(e) ∈ h ∼= TeH, hence, φ(exp(tX)) is the 1-parameter subgroup

of G generated by dφ(X(e)).

We know that exp
(
tdφ(X(e))

)
is the unique 1-parameter subgroup of G generated

by dφ(X(e)). This implies that

φ(exp(tX)) = exp
(
t(dφ(X))

)
,

in particular, φ(exp(X)) = exp
(
(dφ(X))

)
.
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Remark 2.14. The 1-parameter group of diffeomorphism of G associated to left in-

variant vector field X ∈ g is given by Rexp(tX), the right multiplication by exp(tX), as

g exp(tX) is the local flow generated by X and taking the value g at t = 0.

2.3.1 The Lie derivative

Let ΦX
t be the local flow of a smooth vector field X on M , we can define the Lie

derivative on vector fields and differential forms as follows.

Let Y be another smooth vector field Y on M . The Lie derivative of Y with respect

to X, denoted by LXY , is defined as follows, for each x ∈M ,

LXY (x) =
d

dt
|t=0dΦ

X
−t

(
Y (ΦX

t (x))
)
,

it is easy to see that LXY is also a vector field on M .

Let ω be a differential form on M . The Lie derivative of ω with respect to X is

define to be

LXω(x) =
d

dt
|t=0(Φ

X
t

)∗(
ω(ΦX

t (x))
)

= lim
t→0

(ΦX
t

)∗(
ω(ΦX

t (x))
)
− ω(x)

t
.

Here we list a few useful properties about the Lie derivative.

Proposition 2.15. Let X be a smooth vector field on M . Then

1. LXf = Xf for a smooth function f .

2. LXY = [X,Y ] for a smooth vector field Y on M .

3. Acting on differential forms, LX is a derivative which commutes with the exterior

derivative d.

4. On differential forms, LX = ı(X) ◦ d+ d ◦ ı(X).

5. Let ω ∈ Ωk(M), and let X0,X1, · · · ,Xk be smooth vector fields on M . Then

LX0
(X1, · · · ,Xk) = (LX0

ω)(Y1, · · · , Yp)

+
∑k

i=1 ω(Y1, · · · ,Xi−1, LX0
Xi,Xi+1, · · · ,Xk).
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and

dω(X0, · · · ,Xk) =
∑k

i=0Xi

(
ω(X0, · · · , X̂i, · · · , Yp)

)

+
∑

i<j(−1)i+jω([Xi,Xj ],X0, · · · , X̂i, · · · , X̂j , · · · ,Xk).

We first recall the relation between a tangent vector field and local gradient flow.

For a vector field X, the local gradient flow ΦX
t has the following property: by varying

t in a small interval (−ǫ, ǫ), ΦX
t (x) represents the tangent vector X(x).

Proof. LXf = Xf follows from the definition and the above mentioned relation. To

show that LXY = [X,Y ], we only need to show that LXY (f) = [X,Y ](f) for each

f ∈ C∞(M). Let x ∈M . Then

(LXY )(f)(x) =
( d

dt
|t=0dΦ

X
−t

(
Y (ΦX

t (x))
))

(f)

=
d

dt
|t=0

(
Y (ΦX

t (x))
)
(f ◦ ΦX

−t)

=
d

dt
|t=0

d

ds
|s=0(f ◦ ΦX

−t) ◦ (ΦY
s ◦ ΦX

t (x))

=
d

dt
|t=0

d

ds
|s=0f

(
ΦX
−t ◦ ΦY

s ◦ ΦX
t (x)

)

=
d

dt
|t=0

d

ds
|s=0f

(
ΦY
s ◦ ΦX

t (x)
)

+
d

dt
|t=0

d

ds
|s=0f

(
ΦX
−t ◦ ΦY

s (x)
)

= X(Y (f))(x) − Y (X(f))(x) = [X,Y ](f)(x).

The derivative property of LX

LX(ω ∧ η) = LXω ∧ η + ω ∧ LX(η)

follows from adding and subtracting suitable terms in the definition before taking the

limit in the definition.

We now check that LX commutes with d on functions: LX(df)(x) = d(LXf)(x),

for each smooth function f and each point x.

Note that both are cotangent vectors, so we can pair them with an arbitrary tangent

vector field Y . Suppose that the local flow ΦX
t is well-defined for t ∈ (−ǫ, ǫ) for some

ǫ > 0, then we can view f ◦ ΦX
t as a smooth function over (−ǫ, ǫ) × Ux for some

neighborhood Ux of x.

d(LXf)(x)(Y (x)) = Y (LXf)(x) = Y
( d

dt
|t=0(f ◦ ΦX)

)

(x),
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and

LX(df)(x)(Yx) = 〈 d
dt

|t=0(dΦ
X
t )∗

(
df(ΦX

t (x))
)
, Y (x)〉

= 〈 d
dt

|t=0df(ΦX
t (x)), ◦dΦX

t (Y (x))〉

=
d

dt
|t=0

(

Y (f ◦ ΦX)
)

(x)

imply that LX(df) = d(LXf), since
d

dt
and Y satisfy [

d

dt
, Y ] = 0 as vector fields on

(−ǫ, ǫ) × Ux. Write any differential form in local coordinates, we can check that LX

commutes with d.

By using local coordinates, we can verify that LX = ı(X) ◦ d+ d ◦ ı(X). The proof

of claim (5) is also left as an exercise.

A Lie group acts on itself on the left a : G×G→ G by the conjugations:

a(g, h) = Adg(h) = ghg−1.

For each g ∈ G, Adg : G → G is a diffeomorphism with Adg(e) = e. Then the

differential of Adg at e defines a linear isomorphism:

d(Adg)(e) : TeG −→ TeG.

Under the identification of the Lie algebra g of G with TeG, we have the representation

of G on g, still denoted by Ad:

Ad : G −→ Aut(g)

g → Adg = d(Adg)(e)
.

Note that d(Adg1g2)(e) = d(Adg1 ◦ Adg2)(e) = d(Adg1)(e) ◦ d(Adg2)(e). This is called

the adjoint representation of G.

The differential of the adjoint representation Ad of G at the identity is denoted by

ad, which is the adjoint representation of the Lie algebra g.

ad : TeG ∼= g → End(g).

Proposition 2.16. 1. Let X,Y ∈ g, then adX(Y ) = [X,Y ].
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2. exp
(
Adg(X)

)
= Adg(expX) for any g ∈ G and X ∈ g.

3. Adexp(X)(Y ) = exp(adX)(Y ).

Proof. The first property can be proved by direct calculation,

adXY (e) =
d

dt
|t=0d(Adexp(tX))(Y (e))

=
d

dt
|t=0d(Rexp(−tX)) ◦ d(Lexp(tx))(Y (e))

=
d

dt
|t=0d(Rexp(−tX))

(
Y (exp(tX))

)

= LX(Y ) = [X,Y ].

Property 2 and property 3 follow from Proposition 2.13 for the following two com-

mutative diagrams.

G
Adg // G G

Ad // Aut(g)

g

exp

OO

Adg // g

exp

OO

g

exp

OO

ad // End(g)

exp

OO

Note that the representation theory of Lie groups and Lie algebra is a very powerful

theory to understand Lie groups and Lie algebras.

2.4 Maurer-Cartan forms and Maurer-Cartan equations

Dual to left invariant vector fields, we also have left invariant differential 1-forms on a

Lie group G.

Definition 2.17. A differential 1-form ω on a Lie group is left invariant if

ω(g) = dL∗
gω(e) for any g ∈ G. Left invariant 1-forms are also called as Maurer-

Cantan forms on G.

As for left invariant vector fields, left invariant forms are smooth, and are uniquely

determined by their value at the identity. Dual to the Lie algebra g of G, the set of

left invariant 1-forms on G is a dimG dimensional real vector space, denoted by g∗,
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which is dual to g. Using the global expression of the exterior derivative d on G, one

can verify that

dω(X,Y ) = −ω([X,Y ]), (11)

for a left invariant 1-form ω and X,Y ∈ g.

Proposition 2.18. Let {X1, · · · ,Xd} be a basis of the Lie algebra g of a Lie group G

with structures constants {ckij}. Denote by {ω1, · · · , ωd} be the dual basis of g∗. Then

the exterior derivatives of the ωi are given by the Maurer-Cantan equations:

dωi = −
∑

j<k

cijkωj ∧ ωk.

Proof.

dωi(Xj ,Xk) = −ωi([Xj ,Xk]) = −ωi(
∑

l

cljkXl) = −cijk.

2.5 Group actions on manifolds

Definition 2.19. Let G be a Lie group, and let M be a smooth manifold. A smooth

map µ : G × M → M , write µ(g, x) as g · x, is called a left action of G on M if

g1 · (g2 · x) = (g1g2) · x and e · x = x for all g1, g2 ∈ G and x ∈M . The right action of

G on M can be defined similarly.

Sometimes we say that M is a G-manifold. One can check that G acts on M by

diffeomorphisms. For each x ∈M , the map µx : G→M defined by

g 7→ g · x

is a smooth map, which is called the orbit map. The image of µx is called the orbit

of G-action on M through x.
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Definition 2.20. The action of G on M is called transitive if M itself is an orbit,

in this case, M is called a homogeneous space of G. The stabilizer of x of the

G-action on M is defined to be

Gx = {g ∈ G|g · x = x.}

The differential of µx at e, dµx(e), is a linear map:

dµx(e) : TeG ∼= g −→ TxM.

With each X ∈ g, the associated tangent vector dµx(e)(X) is denoted by Xx ∈ TxM .

As x varies in M , the vector field obtained, denoted by X, is called the fundamental

vector field associated with X ∈ g. The local flow on M generated by X, by definition,

is given by

Φ
X
t (x) = exp(tX) · x.

Hence Φ
X
t (x) is a global flow.

Using Proposition (2.16), one can show that Gx is a closed Lie subgroup of G, and

the Lie algebra of Gx is given by

gx = Lie(Gx) = {X ∈ g|Xx = 0.}.

Definition 2.21. An action of G on a manifold M is free if for each x ∈ M , Gx is

{e}. A smooth map f : M → N between two G-manifolds M and N , we say that f is

a G-equivariant map if for each x ∈M and each g ∈ G,

f(g · x) = g · f(x).

Example 2.22. 1. GL(n,R) acts naturally on Rn. If we think of elements of Rn as

n × 1 matrices, then GL(n,R) acts on Rn by matrix multiplication. Let < ·, · >
be the standard inner product. Elements of GL(n,R) which preserve lengths of

vectors are exactly those elements in O(n,R). Hence, we get the standard action

of O(n,R) on the unit sphere Sn−1:

O(n,R) × Sn−1 → Sn−1.
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2. GL(n,C) acts naturally on Cn. Denote the standard Hermitian metric on Cn as

〈, ·, ·〉, that is, under the canonical basis {ei : i = 1, · · · , n}, then

〈
n∑

i

xiei,
n∑

i

yiei〉 =
n∑

i=1

xiyi.

Then elements of the unitary group U(n) are exactly those linear transformations

in GL(n,C) preserving lengths of vectors in Cn. Note that the unit sphere in Cn

is diffeomorphic to the unit sphere S2n−1 ⊂ R2n. Hence, we obtain the left action

of U(n) on S2n−1.

3. The unit circle S1 in C acts on Cn by complex multiplication

t · (z1, · · · , zn) = (tz1, · · · , tzn).

0 ∈ Cn is the fixed point of this action and S1 acts on Cn − 0 freely.

4. For p, q ∈ Z, S1 acts on the unit sphere S3 ⊂ C2 in the following way

t · (z1, z2) = (tpz1, t
qz2).

This action is free if and only if (p, q) = 1.

5. S1 acts on the unit sphere S2 ⊂ R3 ∼= C× R by rotating around a fixed axis, that

is, S1 acts on C by complex multiplication and on R trivially. There are two fixed

points (0, 0, 1) and (0, 0,−1).

Another important classes of G-manifolds are provided by the transitive actions,

those are called homogeneous manifolds.

Theorem 2.23. Let H be a closed Lie subgroup of a Lie group G, and let G/H be the

set {gH|g ∈ G} of left cosets modulo H. Let π : G → G/H be the natural projection

π(g) = gH. Then G/H has a unique smooth structure such that

1. π is smooth, each fiber π−1(gH) admits a transitive and free right H-action.

2. π is locally trivialized, that is, for each gH ∈ G/H, there is a neighborhood U of

gH such that π−1(U) ∼= U ×H in a fiber preserving way.
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Proof. First we show the existence of such manifold structure on G/H.

We topologize G/H by requiring U ⊂ G/H to be open if and only if π−1(U) is open

in G. With this topology on G/H, G/H is a second countable Hausdorff topological

space.

Let m be a fixed complementary subspace of g to h such that g = m ⊕ h. Suppose

that G is of dimension n and that H is of dimension n− d. We construct a coordinate

chart (U, φ) of G at e as follows. Define a map ψ : m ⊕ h → G by

ψ(A,B) = exp(A)exp(B).

Choose open neighborhoods W and V of 0 in m and h respectively. Let

U = ψ(W × V ) ⊂ G and φ = ψ−1. Then (U, φ) is a coordinate chart of G at e,

and H ∩ U = ψ({0} × V ).

Choose an open neighborhood C ⊂W such that −C = C and exp(C)exp(C) ⊂ U .

Define local slices of G around e by

ψ({c} × V )

for each c ∈ C.

Let c1, c2 ∈ C, such that exp(c1)exp(V ) and exp(c2)exp(V ) lie in a common coset

modulo H, then

exp(−c1)exp(c2) ∈ H ∩ U = ψ({0} × V ),

from which there exists v ∈ V such that

ψ(c1, v) = exp(c1)exp(v) = exp(c2) = ψ(c2, 0).

This implies that c1 = c2 and v = 0. Hence, each coset gH meets with ψ(C × V ) in at

most one slice, and the map ψC : C ×H → ψ(C × V )H given by

ψC(c, h) = exp(c)h

is a diffeomorphism. Let UeH = π(ψ(C × V )). Denote by πC the projection

C ×H → C ⊂ m ∼= Rd.
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Then, (UeH , φe = πC ◦ ψ−1
C ) is a coordinate chart on G/H.

As G can be covered by the open set of the form gψ(C × V )H for g ∈ G, then

{UgH = π(gψ(C × V )H)}g∈G

covers G/H.

For each open set UgH , it has a coordinate function of the form

φg = φe ◦Lg−1 : UgH → C ⊂ Rd. On the overlap Ug1H ∩Ug2H , the coordinate functions

φg1 and φg2 are related by φg2 = φg1 ◦ Lg1g−1

2

, which is smooth. Hence, {(UgH , φg)} is

an atlas on G/H, which endows G/H with a smooth structure, and π is a smooth map.

On each open set UgH , define sg = Lg ◦ φ−1|C ◦ φg :

UgH → C → U → Lg(U) ⊂ G.

Then sg is a smooth map satisfying π ◦ sg = Id. sg is called the local section of π.

The local trivialization over UgH is obtained by the diffeomorphism

UgH ×H → gψ(C × V )H ⊂ G

which maps (g1H,h) to sg(g1H)h.

To prove the uniqueness of such smooth structure on G/H. For any other smooth

structure on G/H satisfying two properties in Theorem, we can check that the identity

map on G/H is a diffeomorphism with the help of local trivializations.

Theorem 2.24. Let µ : G×M →M be a transitive left action of G on M . Let x ∈M

and Gx is the stabilizer of G-action at x. Then the map θ : G/Gx →M defined by

θ(gGx) = g · x

is a G-equivariant diffeomorphism.

Proof. It is easy to see that θ is bijective. We only need to show that θ is smooth and

its differential is non-degenerate (by inverse function theorem). From the construction
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of smooth structure on G/H, we know that θ is smooth if and only if θ ◦ π : G → M

is smooth, which is obvious as θ ◦ π = µx is the orbit map.

Now it is suffice to show that dθ(eGx) : TeGx(G/Gx) → TxM is an isomorphism.

Note that TeGx(G/Gx) ∼= m from the proof the above theorem. For any X ∈ m, the

representing curve on G/Gx can be written as exp(tX)H, under the differential dθ, it

is mapped to exp(tX) · x, which is zero if and only if X ∈ m ∩ h = {0}, hence dθ(eGx)

is injective. On the other hand, any smooth path on M through x can be written gt ·x
for a smooth path in G through e. Then dθ(eGx) maps the tangent vector represented

by gtH to the tangent vector represented by gt · x, hence dθ(eGx) is surjective.

Example 2.25. 1. The natural action of orthogonal group O(n) = O(n,R) on Sn−1

is transitive. Denote e1 the point of Sn−1 with n-tuples of all zeros except 1 at the

first position. If v is any point in Sn−1, then we can construct an orthonormal

basis of Rn, {v1, · · · , vn}, containing v1 as the first element. Write

vi =

n∑

j=1

gijej .

Then g = (gij) is an element of O(n), and g · e1 = v1. Hence, the left action of

O(n) on Sn−1 is transitive. Now we like to understand the stabilizer group Ge1 :

Direct calculation shows that Ge1 consists of elements of form












1 0 · · · 0

0

... ĝij

0












where ĝ = (ĝij) is an element of O(n − 1). Theorem 2.24 implies that

there is a natural diffeomorphism between Sn−1 and the homogeneous manifold

O(n)/O(n − 1). Actually, we have

Sn−1 ∼= O(n)/O(n− 1) ∼= SO(n)/SO(n − 1).
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2. Similar arguments show that

S2n−1 ∼= U(n)/U(n − 1) ∼= SU(n)/SU(n− 1).

Note that SU(1) = {e}, we have a Lie group structure on S3 ∼= SU(2).

3. RPn ∼= SO(n+ 1)/O(n) where O(n) is a closed subgroup of SO(n+ 1) under the

following identification for each ĝ ∈ O(n):












det(ĝ) 0 · · · 0

0

... ĝij

0












.

4. CPn ∼= SU(n+ 1)/U(n) where U(n) is a closed subgroup of SU(n+ 1) under the

following identification:












1/det(ĝ) 0 · · · 0

0

... ĝij

0












.

5. The Grassmann manifold of k-planes in a real d-dimensional vector space,

Grk(V ), is the set of all k-dimensional subspaces (k-planes) of V . Choose a

basis v1, · · · , vn for V , then O(n) ⊂ GL(n,R) acts linearly on V , maps k-planes

to k-planes. One can check that O(n) acts transitively on Grk(V). Note that

Gr1(C
n+1) ∼= CPn.

Let P0 be the k-plane spanned by the first k-elements of the basis, then the stabi-

lizer of O(n)-action at P0 is given by subset of O(n) of form:




g1 0

0 g2
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where g1 ∈ O(k) and g2 ∈ O(n − k). We can endow Grk(V ) with a

smooth structure such that Grk(V ) is diffeomorphic to the homogeneous man-

ifold O(n)/(O(k) ×O(n− k)).
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3 Principal Bundles

3.1 Definition, examples and the transition functions

Definition 3.1. A principal bundle is a quadruple (P,M ;G,π), where P and M are

smooth manifolds and G is a Lie group acting freely on P on the right, π : P → M is

a smooth map, called the projection, such that

1. For every x ∈ M , the fiber π−1(x) ∼= G as smooth manifolds, which admits a

transitive and free right G-action.

2. The right G action on P preserves the fibers of π.

3. For each point x ∈ M , there exists an open neighborhood Ux ⊂M of x such that

ψ : π−1(Ux) ∼= Ux ×G in a fiber preserving way.

P is called the total space of the principal bundle, M is called the base.

Note that ψ is equivariant with respect to G-actions where G acts Ux ×G trivially

on Ux and by right translation on G

Homogeneous manifolds, see Example 2.25, provide many interesting examples of

principal bundles, as we can think the natural projection π : G → G/H as a principal

H-bundle over the base G/H, as provided by Theorem 2.23.

Example 3.2. 1. (The Hopf bundle) The unit sphere S3 ⊂ R4 = C2 is a U(1)-

principal bundle over SU(2)/U(1) ∼= CP1. We like to discuss more about this

principal bundle as it is one of important examples which we will meet again.

Note that S3 ∼= SU(2) and U(1) is the circle group in C − {0}, and

CP1 = {[z1, z2]|0 6= (z1, z2) ∈ C2}

where [z1, z2] represents the equivalence class of (z1, z2) under the relation

(z1, z2) ∼ (z′1, z
′
2) if and only if there is a non-zero t ∈ C such that

(z1, z2) = t(z′1, z
′
2). There is an identification of CP1 with S2 using the stere-

ographic projection from the north pole n ∈ S2, pn : S2 − {n} → R2 ∼= C. On
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the other hand, we can identify CP1−{[0, 1]} with C by the map [z1, z2] 7→ z2/z1.

By assigning [0, 1] to n and [z1, z2] to p−1
n (z2/z1), we can check that this defines

a smooth diffeomorphism between S2 with CP1.

Define π : S3 ∼= SU(2) → S2 by mapping (z1, z2) → [z1, z2], which is a smooth

projection. The fiber over each point [z1, z2] ∈ CP1 is

π−1([z1, z2]) = {t(z1, z2)|t ∈ C, |t| = 1} ∼= S1.

To see that π is locally trivialized without resorting to Theorem 2.23, we

use the standard cover from the stereographic projection: U1 and U2, where

Ui = {[z1, z2]|zi 6= 0}. Then the local section over Ui given by

(z1, z2) 7→ ([z1, z2], zi/|zi|)

defines a local trivialization of (S3, S2;S1, π).

2. The Frame bundle of a smooth manifold M of dimension d: Fr(M). A point

in Fr(M) consists of a point x ∈ M and a basis for the tangent space TxM .

The projection π : Fr(M) → M is obvious. There is a right transitive action of

GL(d,R) on Fr(M): for A = (aij) ∈ GL(d,R), the action is given by

(x, {v1, · · · , vd}) 7→ (x, {w1, · · · , wd}) = (x, {v1, · · · , vd} ·A),

where wj =
∑d

i=1 aijvi. As the tangent bundle, the smooth structure and the

local trivialization are given by any atlas of M . Let (U, φ = (φ1, · · · , φd)) be a

coordinate chart of M . Then we can define the local trivialization of π over U by

(x,A) 7→
(
x, { ∂

∂φ1
(x), · · · , ∂

∂φd
(x)} ·A

)
.

3. Let Z2 be the group with two elements {+1,−1}. There is a natural action of Z2

on the unit sphere Sn via

x · (±1) = ±x

for x ∈ Sn ⊂ Rn+1. It is easy to see that Sn/Z2
∼= RPn. Hence (Sn,RPn;π,Z2)

is a principal Z2-bundle over the real projective space RPn. Note that the fiber of

this bundle is discrete and that π : Sn → RPn is locally diffeomorphic.
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4. We know that O(n) is a principal O(n) × O(k)-bundle over the Grassman-

nian manifold Grk(Rn). Here we give another interesting principal bundle over

Grk(Rn), the Stiefel manifold.

The Stiefel manifold of k-frames in Rn, denoted by F (k,Rn), is the space of all

k-frames in Rn, which can be identified with the space of all n × k matrices of

rank k. Note that there is a canonical projection π : F (k,Rn) → Grk(Rn) where

the k-frame generates a unique k-plane. Suppose that A is a n× k matrix of rank

k, then the k-columns of A are independent k-vectors in Rn which generate the

k-plane π(A). From this obeservation, we can get coordinate charts for Grk(Rn):

any k-frame in Rn is given by a n× k matrix

−→v = {v1, · · · , vk} =








v11 · · · v1k
... · · · ...

vn1 · · · vnk








with some k × k-minor matrix of non-zero determinant, say

A =








vi11 · · · vi1k
... · · · ...

vik1 · · · vikk







.

Then −→v · A−1 ∈ Ui1···ik
∼= Rk×(n−k) where Ui1···ik is the subset of the space of

n × k-matrix with k × k minor matrix I determined by {i1, · · · , ik}-rows. It is

easy to see that {Ui1···ik} covers Grk(Rn)

There is a natural GL(k,R)-action from the right on F (k,Rn). We can show

that this is a free action and Grk(Rn) ∼= F(k,n)/GL(k,R). Over each Ui1···ik ,

π : F (k,Rn) → Grk(Rn) is trivial. Hence, F (k,Rn) is a principal GL(k,R)-

bundle over Grk(Rn).

Definition 3.3. Two principal G-bundles with the same base are isomorphic if there

is a diffeomorphism between their total space, which is G-equivariant and commutes

with the projections to the base. Let π : P → M be a principal G-bundle. The gauge
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group consists of the bundle isomorphisms between (P,M ;π,G) to itself which cover

the identity map on the base.

There is another description of principal bundles, which in turn also yields explicit

constructions of principal bundles. This involves the transition functions which tell us

how two local trivializations are glued together along their overlap.

Let (P,M ;π,G) be a principal bundle with trivialization given by

ψα : Pα = P |Uα = π−1(Uα) → Uα ×G

for a cover {Uα} of M . Note that ψα is G-equivariant where G acts on Uα×G trivially

on Uα and by group multiplication on G on the right. For each pair Uα and Uβ with

Uα ∩ Uβ 6= o, then for each x ∈ Uα ∩ Uβ, we have the following commutative diagram:

Pα|Uα∩Uβ

ψβ

��

= // Pβ |Uα∩Uβ

ψα

��
(Uα ∩ Uβ) ×G

ψα◦ψ
−1

β // (Uα ∩ Uβ) ×G

which implies that ψα ◦ψ−1
β (x, g) =

(
ψα ◦ψ−1

β (x, e)
)
g. Define a map gαβ : Uα∩Uβ → G

determined by

ψα ◦ ψ−1
β (x, e) = (x, gαβ(x)).

Then {gαβ} are smooth maps, called the transition functions of (P,M ;π,G) associated

to a trivializations {ψα}. If (Uα ∩ Uβ ∩ Uγ) ×G is non-empty, then

(
ψα ◦ ψ−1

β

)
◦

(
ψβ ◦ ψ−1

γ

)
◦

(
ψγ ◦ ψ−1

α

)
(x, e) = (x, e)

implies that the transition functions satisfy the following cocycle condition:

gαβgβγgγα = e ∈ G,

on Uα ∩ Uβ ∩ Uγ 6= o. This cocycle condition also implies that gαβ = g−1
βα .

Assume that {ψ′
α : π−1(Uα) → Uα×G is another trivialization, that is, ψ′

α is another

G-equivariant map, with transition functions {g′αβ}, then there exist smooths maps

hα : Uα −→ G
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such that the following diagram of G-equivaraint maps commutes

π−1(Uα)
ψα //

ψ′

α

%%KKKKKKKKKK
Uα ×G

hα

��

∋ (x, g)
_

��
Uα ×G ∋ (x, hα(x)g)

which implies that ψ′
α ◦ ψ−1

α (x, g) = (x, hα(x)g), and ψβ ◦ (ψ′
β)

−1(x, g) = (x, h−1
β (x)g)

by the same argument. Apply

ψ′
α ◦ (ψ′

β)
−1 =

(
ψ′
α ◦ ψ−1

α

)
◦

(
ψα ◦ ψ−1

β

)
◦

(
ψβ ◦ (ψ′

β)
−1

)

to (x, e) ∈ (Uα ∩ Uβ) ×G to get

g′αβ = hαgαβh
−1
β . (12)

We say that two transition functions differ by a coboundary if they satisfy (12), and that

these two transition functions are equivalent cocycles modulo a coboundary element.

If a principal G-bundle P admits a trivialization with transition function a cobound-

ary element {hαh−1
β }, then P is a trivial bundle M ×G.

Theorem 3.4. Up to a bundle isomorphism, the principal G-bundle over a smooth

manifold M is uniquely determined by the equivalence class of the transition functions.

Proof. Given a cover {Uα} of M , and smooth transition functions

gαβ : Uα ∩ Uβ −→ G

satisfying gαβgβγgγα = e on Uα ∩ Uβ ∩ Uγ 6= o. Define

P =
(∐

Uα ×G
)
/ ∼{gαβ}

where the equivalence relation is defined as follows

(x, g) ∈ Uα ×G ∼{gαβ} (x′, g′) ∈ Uβ ×G

if and only if x = x′ and g = gαβ(x)g
′. Put the quotient topology on P . With the

smooth structures on M and G, and the smoothness of transition functions, we can
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give a unique smooth structure on P such that the projection π : P → M is smooth.

From the construction, we see that (P,M ;π,G) is a principal bundle.

From the above discussion, we can show that two principal bundles constructed are

isomorphic if the corresponding transition functions differ by a coboundary.

From this theorem, we can deduce that the isomorphism classes of principal G-

bundles are classified by H1(M,G), the first Cech cohomology group of M with coeffi-

cients in G.

For a smooth map f : M → N , we can form a principal G-bundle over M by the

pull-back of a principal bundle (P,N ;π,G). The total space is the fiber product of

π : P → N and f : M → N , denoted by f∗P :

f∗P = {(x, p) ∈M × P |f(x) = π(p)}.

One can check that f∗P is a principal G-bundle over M . Suppose that {gαβ} is the

transition function subordinate to a cover {Uα} of N , then {gαβ ◦ f} is the transition

function for the cover {f−1(Uα)} of M . f∗P is called the pull-back principal bundle

by f .

Remark 3.5. 1. For a principal bundle (P,M ;π,G), G is also the structure

group, by definition, the structure group is the group where the transition func-

tions take values.

2. For a Lie group homomorphism φ : G→ H, we can get a principal H-bundle over

M from a principal G-bundle over M , in terms of transition functions, which can

be described as follows. Let {gαβ} be the transition functions of (PG,M, π,G) for

a cover {Uα} of M , then {φ ◦ gαβ} is a H-valued cocycle. Using {φ ◦ gαβ} as

transition functions, we obtain a principal bundle (PH ,M, π,H), where

PH =
(∐

Uα ×H
)
/ ∼{φ(gαβ)}

with the equivalence relation given by

(x, h) ∈ Uα ×H ∼{φ(gαβ)} (x′, h′) ∈ Uβ ×H

if and only if x = x′ and h = φ(gαβ(x))h
′.
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3.2 Associated bundles

Definition 3.6. Suppose that (P,M, π,G) is a principal G-bundle over M , and a left

action of G on a manifold F , the associated fiber bundle with fiber F is a locally trivial

bundle constructed as

πF : P ×G F −→M

where P ×G F = P × F/ ∼ with (p1, v1) ∼ (p2, v2) if and only if p1 = p2 · g, and

v1 = g−1 · v2.

Using the local trivialization of π : P →M , we can write

P =
⋃

α

(
Uα ×G

)

where over Uα ∩ Uβ, the transition function is given by gαβ : Uα ∩ Uβ → G. Then

P ×G F ∼=
(∐

α

Uα × F
)
/ ∼{ĝαβ}

where ĝαβ is the composition of gαβ with the left action of G on F :

ĝαβ : Uα ∩ Uβ → G→ Diff(F ),

here Diff(F ) is the diffeomorphism group of F . As locally, we can identify

(Uα ×G) ×G F −→ Uα × F

[(x, g)α, v] 7→ (x, g · v)

With this local trivialization for PF , we can endow P ×G F with a smooth manifold

structure such that πF is smooth and locally trivial.

If we have a representation of G on a linear vector space V ,

ρ : G −→ GL(V )

then we have an associated vector bundle PV = P ×G V with fiber V . In particular,

if V = Rn, then we have a rank n real vector bundle (E,M ;π,Rn) associated with

(P,M ;π,G) and a representation ρ : G→ GL(n,R). Using local construction,

E =
(∐

α

×F
)
/ ∼{ρ(gαβ)}

56



with the equivalence relation given by

(x, v) ∈ Uα × Rn ∼{ρ(gαβ)} (x′, v′) ∈ Uβ × Rn

if and only if x = x′ and v′ = ρ(gαβ(x))v. From this local trivialization, we can give a

unique manifold structure on E such that π : E →M is smooth.

Similarly, we can get an associated complex vector bundle with fiber Cn from a

representation ρ : G→ GL(n,C).

Example 3.7. 1. The tangent TM over a smooth manifold M is an associated real

vector bundle of the frame bundle Fr(M) with the natural action of GL(d,R)

on Rn. The cotangent bundle T ∗M of M is an associated real vector bundle of

Fr(M) with the representation of GL(d,R) on Rn given by the transpose-inverse

of the natural action.

2. Let P be a circle bundle over M , (for example, the Hopf bundle over CP1 ∼= S2),

using the natural embedding U(1) ⊂ C∗ = GL(1,C), we get an associated complex

line bundle L = P ×U(1) C.

3. Let (E,M ;π,Rn) be a rank n vector bundle. Using the local trivialization of E

for a cover {Uα} of M , we get the transition functions {gαβ} so that

E ∼=
(∐

Uα × Rn
)
/ ∼{gαβ} .

Then PE = E×GL(n,Rn)GL(n,R) is a GL(n,R)-principal bundle over M , and E is

an associated vector bundle over M of PE with the natural action of GL(n,R) on

Rn. Taking the transpose-inverse of this natural action, we get another associated

real vector bundle of rank n, this is called the dual bundle E∗, as we can identify

the fiber of E∗ as the dual space of the fiber of E.

Remark 3.8. 1. For a rank n vector bundle (E,M ;π,Rn), its transition functions

can be applied to define a principal GL(n,R)-bundle over. This principal bundle

is isomorphic to the principal bundle defined by the frames of fibers.
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2. Using the transition functions, we can construct many news bundles from the

known ones. To list just a few, we suppose that E1 and E2 are two vector bundles

of rank n1 and n2 with transition functions {g1
αβ} and {g2

αβ} for a cover {Uα} of

M respectively. Then

(a) we can define a rank n1 + n2 real vector bundle

E1 ⊕ E2 =
(∐

Uα × Rn1+n2
)
/ ∼{g1

αβ
⊕g2

αβ
}

whose fiber is the direct sum of the fibers of E1 and E2.

(b) we can define a rank n1n2 vector bundle

E1 ⊗ E2 =
(∐

Uα × Rn1n2
)
/ ∼{g1

αβ
⊗g2

αβ
} .

We also have a rank n1n2 vector bundle E∗
1 ⊗ E2, also denoted by

Hom(E1, E2), whose fiber at x is (E1)
∗
x ⊗ (E2)x ∼= Hom((E1)x, (E2)x), in

particular, End(E) = Hom(E,E) = E∗ ⊗ E.

Definition 3.9. (Sections of a fiber bundle) Let (P,M ;π, F ) be a fiber bundle with

fiber F , a smooth section of P is a smooth map

s : M −→ P

such that π ◦ s = IdM .

Under a local trivialization of P with transition functions {gαβ}, a section s can be

written as local sections

sα = s|Uα : Uα → π−1(Uα) ∼= Uα × F

we can identify the local section sα as a function Uα → F , still denoted by sα, then

from the following diagram

π1(Uα ∩ Uβ)

��

ψα //

ψβ

((QQQQQQQQQQQQQ
(Uα ∩ Uβ) ×G

Uα ∩ Uβ

s

DD

(Uα ∩ Uβ) ×G,

gαβ

OO
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these local sections satisfy

sα = gαβsβ.

A section s of a fiber bundle (P,F ;π, F ) can also be described as a G-equivariant map

s : P → F , that is,

s(p · g) = g−1 · s(p). (13)

We can see that a principal bundle (P,M ;π,G) admits a section if and only if P is

trivial, which means that there exist a G-equivariant diffeomorphism P ∼= M ×G. On

the other hand, the space of section on a vector bundle is infinite dimensional vector

space.

Definition 3.10. (Gauge group) Let (P,M ;π,G) be a principal bundle, the adjoint

action of G on itself

Ad : G −→ Diff(G)

defines an associated bundle Aut(P ) = P×AdG, which is a bundle of groups. The space

of sections of Aut(P) is a group under the fiberwise group multiplication. This group is

called the gauge group of P . For a rank n vector bundle (E,M ;π,Rn), the gauge group

for its principal bundle of frames (PE ,M ;π,GL(n,R)) is also called the gauge group of

E, which is the space of sections of

Aut(PE) = PE ×Ad GL(n,R).

One can check that the gauge group of P consists of all bundle isomorphisms from

(P,M ;π,G) to itself covering the identity map on M . Sometimes, we also denote

Aut(PE) just by Aut(E), then Aut(E) ⊂ End(E).

Locally, an element u in the gauge group of a principal bundle consists of a family

of functions uα : Uα → G satisfying

uα = gαβuβg
−1
αβ .

Lemma 3.11. For a principal bundle (P,M ;π,G) with abelian group G, then Aut(P )

is a trivial bundle, the smooth gauge group is isomorphic to C∞(M,G).

Proof. It is obvious, as the transition function of Aut(P ) is trivial.
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3.3 Universal bundles

Now we discuss the universal bundle for real vector bundles, that means, all the real

vector bundle can be obtained by the pull-back bundle from this universal bundle. The

universal bundle for general principal bundle involves the concept of classifying space

of Lie groups, which we will discuss very briefly at the end of this section.

Recall the Grassmannian Grk(Rn), a homogeneous manifold of dimension k(n−k),
which is the set of all k-planes in Rn. Consider the subset of Grk(Rn)×Rn consisting

of

ξ(k, n) = {(V, v)|V ∈ Grk(Rn),v ∈ V}

with the natural projection π : ξ(k, n) → Grk(Rn). The fiber of π over V ∈ Grk(Rn)

is V itself. We can see that ξ(k, n) is the associated bundle of the principal GL(k,R)-

bunlde F (k, n) with the natural representation of GL(k,R) on Rk.

We have the obvious inclusion Grk(Rn) ⊂ Grk(Rn+1). Let Grk(R∞) be the union

of all these Grassmannian spaces for all n > k, which can be viewed as the Grass-

mannian of k-planes in R∞. Then we have a principal GL(k,R)-bundle P (ξk) over

Grk(R∞) and an associated rank k vector bundle ξk.

P (ξk) and ξk are the universal bundle in following sense. Suppose that E is a rank

k vector bundle over a manifold M such that the local trivialization is given by

ψα : E|Uα → Uα × Rk

for an locally finite open covering {Uα}. Let {ρα} be a partition of unity subordinate

to this covering. We define

µα = ρα · (π2 ◦ ψα) : E → Rk
α
∼= Rk

where π2 is the obvious projection Uα × Rk → Rk. Now

µ = ⊕αµα : E →
⊕

α

Rk
α ⊂ R∞

which embeds each fiber of E linearly into the k-dimensional linear subspace of R∞,

therefore µ defines a map

f : M −→ Grk(R∞)
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and an bundle isomorphism between E and f∗(ξk).

Actually, pulling back the universal bundle P (ξk) induces a bijective function from

the set of homotopy classes of maps [M,Grk(R∞)] to the set of isomorphism classes of

principal GL(k,R) bundle over M .

Definition 3.12. A principal G-bundle (P,B;π,G) is universal if

1. For any principal G-bundle (P,M, π,G), there exists a map f : M → B such that

P ∼= f∗P.

2. Two maps f1 and f2: M → B induce isomorphic bundles if and only if they are

homotopic.

For a Lie group G, there is construction for the classifying space BG and a universal

bundle EG over BG. EG is obtained by the so called Milnor construction (an infinite

join of G):

G ∗G ∗ · · · ∗G ∗ · · ·
= {(t0g0, t1g1, t2g2, · · · )|ti ∈ [0, 1],

∑

i ti = 1. only finitely many non-zero ti.}/ ∼

where (t0g0, t1g1, t2g2, · · · ) ∼ (t′0g
′
0, t

′
1g

′
1, t

′
2g

′
2, · · · ) if and only if







ti = t′i ∀i
ti = t′i 6= 0 ⇒ gi = g′i.

The G-action on EG is given by the right group multiplication of G on each com-

ponent. This action is free, and the quotient space is denoted by BG. One can give a

smooth manifold structure on EG such that (EG,BG, π,G) is a principal bundle.

Proposition 3.13. For any principal bundle (P,M ;π1, G), there exists a smooth map

f : M → BG such that f∗EG ∼= P .

Proof. (Sketch) The proof is constructive: to construct two maps f and F making

the following diagram commute:

P

π1

��

F // EG

π

��
M

f // BG.

61



Consider a partition of unity {(ρn) : n ≥ 0} on M such that P |
ρ−1

(
(0,1]

) is trivialized,

let Un = ρ−1
(
(0, 1]

)
, then the trivialization is given by

PUn

ψn // Un ×G

π2

��
G

Define

F (p) =< ρ0(π1(p))π2(ψ0(p)), ρ1(π1(p))π2(ψ1(p)), · · · , ρn(π1(p))π2(ψn(p)), · · · > .

Then F is a well-defined G-equivariant map, hence induces a map f : M → BG. It is

not hard to check that f∗EG ∼= P .

To show that (EG,BG, π,G) is indeed universal, we have to establish the homotopy

property for (EG,BG, π,G). We omit the details here. Also we admit without proof

that EG is contractible and that any principal G-bundle with contractible total space

is homotopic to EG.

Example 3.14. 1. For G = Z2, EG = S∞ and BG = RP∞.

2. For G = S1, EG = S∞ = limn→∞ S2n+1 and BG = CP∞.

3. For G = GL(k,R), EG is the Stiefel manifold F (k,R∞) = limn→∞ F (k,Rn) and

BG is the infinite Grassmann manifold Grk(R
∞).

4. For G = GL(k,C), EG is the complex Stiefel manifold (the space of k-complex

frames in C∞) F (k,C∞) = limn→∞ F (k,Cn) and BG = Grk(C
∞).
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4 Connections and Curvatures

4.1 Connections

To order to study principal bundles and their associated bundles, we need some tools

to do differentials on bundles. First concept we need to establish is connection. There

are three points of view to say ”what is a connection?”.

1. A connection is a device to computing derivatives of sections of a vector bundle.

2. A connection is a device to comparing fibers at different points by ”parallel trans-

port along a curve”.

3. A connection is a device to decomposing the tangent spaces to points in the total

space of a bundle into the vertical subspaces and the horizontal subspaces in an

equivariant way.

4.1.1 Connections on vector bundles

Start with a trivial vector bundle Rn = M × Rn. Then the space of smooth sections

can be identified with the space of smooth functions from M to Rn.

Ω0(M,Rn) ∼= C∞(M,Rn).

We know that the usual exterior derivative defines a map:

d : Ω0(M,Rn) −→ Ω0(M,T ∗M ⊗ Rn) = Ω1(M,Rn)

f 7→ df

satisfying

1. d is linear.

2. For any u ∈ C∞(M,R), d(uf) = du⊗ f + udf , this is called the Leibniz rule.

Definition 4.1. Let (E,M ;π,Rn) be a vector bundle. Denote by Ω0(M,E) the space

of smooth sections of E. A connection on E is a map

D : Ω0(M,E) −→ Ω0(M,T ∗M ⊗E) = Ω1(M,E)

s 7→ Ds
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satisfying

1. D is linear.

2. D(fs) = df ⊗ s+ fDs, for all f ∈ C∞(M,R) and s ∈ Ω0(M,E).

A connection D on E is a local operator, just as the exterior derivative is a local

operator. Under a local trivialization: ψ : E|U ∼= U × Rn, we have the corresponding

local frame {ei}ni=1 defined by the standard basis for Rn. Over U , any section s can be

written as s =
∑

i siei with si : U → R a smooth function. Then

Ds =
∑

i

dsi ⊗ ei + si(Dei)

where Dei is a section of T ∗U ⊗ E|U . There exist 1-forms Aji defined on U such that

Dei =
∑

j

Aji ⊗ ej

Hence,

Ds =
∑

i,j

(dsi +Aijsj) ⊗ ei.

We identify s = (s1, · · · , sn)t under the corresponding local frame from a local trivial-

ization, we can write

D











s1

s2
...

sn











= (d+A)











s1

s2
...

sn











,

where A = (Aij) is a n × n matrix of 1-forms on U . So we get a local expression of

a connection D over U : d + A with A is a matrix-valued 1-form on U . On the other

hand, any local operator of form d+A with A is a matrix-valued 1-form on U defines

a local connection on E|U ∼= U × Rn.

Exercise 4.2. 1. Let (E,M ;π,Rn) be a vector bundle with a local trivialization

ψα : E|Uα −→ Uα × Rn

and a partition of unity {ρα} subordinate to the cover {Uα} on M . Choose any

local connection Dα on E|Uα . Define
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(a) D1 =
∑

α ραDα;

(b) D2 =
∑

αDα ◦ ρα.

Show that D1 and D2 are connections on E, and

D1 −D2 =
∑

α

dρα ⊗ Id.

is a End(E)-valued 1-form on M .

2. Fix a connection D0 on a vector bundle E. Denote by A(E) the space of all

connections on E, then A(E) = D0 + Ω1(M,End(E)), hence is an infinite di-

mensional affine space based on Ω1(M,End(E)).

Proposition 4.3. Let D be a connection on E with local expression {d+Aα}α under

the local trivialization

E =
(∐

Uα × Rn
)
/ ∼{gαβ}

such that Aα is n× n-matrix valued 1-form on Uα. Then

Aα = g−1
αβAβgαβ + g−1

αβdgαβ (14)

on any non-empty Uα ∩ Uβ.

Proof. As the local frames {eαi }ni=1 and {eβi }ni=1 over Uα ∩ Uβ are related by

{eα1 , · · · , eαn} = {eβ1 , · · · , eβn} · gαβ .

From this, we see that eαi = gjiαβe
β
j . Applying D and the Leibniz rule, the proof can be

obtained:

(Aα)ji ⊗ eαj = Deαi

= D(gjiαβe
β
j )

= d(gαβ)ji ⊗ eβj + (gαβ)jiDe
β
j

= d(gαβ)ji(gβα)kj ⊗ eαk + (gαβ)jiA
β
kj ⊗ eβk

= d(gαβ)ji(gβα)kj ⊗ eαk + (gαβ)jiA
β
kj(gβα)lk ⊗ eαl

=
(
g−1
αβAβgαβ + g−1

αβdgαβ
)

ji
⊗ eαj .
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Therefore, a connection D on a vector bundle is specified by a family of matrix-

valued 1-forms {Aα} for a cover {Uα} satisfying the relation (14).

Remark 4.4. If {gαβ : Uα ∩ Uβ → GL(n,R)} is locally constant, then {Aα = 0} is

a solution to (14). We call a bundle with locally constant transition functions a flat

bundle.

As a principal bundle admits a section if and only if the bundle is trivial. So we

need to develop the concept of connection in terms of the second and the third points

of view at the beginning of this section.

Given a connection D on a vector bundle (E,M, π,Rn), D is a linear map

D : Ω0(M,E) → Ω1(M,E). Hence, for a vector field X on M , we define the so

called covariant derivative along the direction determined by X:

∇X : Ω0(M,E) −→ Ω0(M,E)

s 7→< Ds,X >

which is a linear map. ∇ is called the covariant differential corresponding to D. Then

∇ satisfies

1. ∇λX+Y (s) = λ∇X(s) + ∇Y (s), for any s ∈ Ω0(M,E) and λ ∈ R.

2. ∇X(fs) = X(f)s+ f∇X(s).

Let γ : (−ǫ, ǫ) → M be a smooth path through x ∈ M which gives a vector field

along γ, denoted by γ̇. Choose a trivialization of E over U around x: E|U ∼= U × Rn

so that any section of E over U can be write as










s1

s2
...

sn











and the connection D|U = d + A for a matrix valued 1-form A on U . Then there is a

unique solution to the following ordinary differential equation with initial condition:






ds
(
γ(t)

)

dt
+ < A

(
γ(t)

)
· s(γ(t)), γ̇(t) >= 0

s(γ(0)) = e ∈ Eγ(0).
(15)
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The solution is a curve γ̃e in E through e, which is called the horizontal lift of γ. This

lift defines an isomorphism, called the parallel transport along γ:

τγ(t) : Ex −→ Eγ(t)

e 7→ γ̃e(t).
(16)

Fix a section s and a smooth path γ(t) through x ∈ M . As the horizontal lift of

γ(t) through s(x), denoted by s̃ = τγ(t)(s(x)), it satisfies the equation

< ds̃, γ̇(0) >= − < A
(
γ(0)

)
· s(γ(0)), γ̇(0) > .

Hence, we have the following lemma.

Lemma 4.5. The covariant derivative along X = [γ] ∈ TxM is given by

∇X(s) = lim
t→0

τ−1
γ (t) ◦ s(γ(t)) − s(x)

t
.

So the parallel transport along a curve, which is uniquely determined by the con-

nection D allows us to identify fibers at different points on this curve.

Let e ∈ Ex, the differentials of the inclusion map of the fiber Ex and the projection

π : E →M define the following exact sequence of vector spaces:

0 → Rn → TeE → TxM → 0.

The horizontal lift defines a map

hx : TxM −→ TeE

X = [γ] 7→ Xh = [γ̃]
(17)

where γ̃ is the horizontal lift of γ through e ∈ Ex. We see that dπ ◦hx = Id. Therefore

we have a unique decomposition

TeE = TeEx ⊕Hx

where Hx is the space of horizontal tangent vectors in TeE, and TeEx is called the

vertical tangent subspace of TeE.

These two points (16) and (17) of view of connections can be generalized to any fiber

bundle, in particular, any principal bundle. For a principal bundle, we will require that

the decomposition and the parallel transport are equivariant under the group action.
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4.1.2 Connections on principal bundles

We now define a connection for a smooth principal bundle to be an infinitesimal version

of an equivariant family of cross sections.

Definition 4.6. Let π : P →M be a principal G-bundle over an n-dimensional mani-

fold M . A connection P is an n-dimensional distribution H, that is, a smooth family

of n-dimensional linear subspaces of tangent bundle TP of P , which is horizontal in

the sense that dπ sends each plane in H isomorphically the corresponding tangent space

of M , and which is invariant under G-action.

For any p ∈ P , a connection, as a equivariant horizontal lift, defines a right inverse

to dπ in the following exact sequence

0 //g
υp //TpP

dπp //Tπ(p)M

hp

ee
//0

where we identify the tangent of the fiber, Tp(p · G), with the Lie algebra of G under

the differential of the orbit map through p, which gives a inclusion map

υp : g −→ TpP.

Hence a connection induces an isomorphism

TpP ∼= g ⊕ Tπ(p)M.

Note that the tangent spaces along the fibers of P is a sub-bundle of TP , and

Tp(p · G) ∼= g is called the vertical tangent space, the image of the horizontal lift

(given by the connection) is called the horizontal tangent space.

Proposition 4.7. Give a smooth path γ : [0, 1] → M from x0 to x1, a connection on

(P,M ;π,G) defines an isomorphism

τγ : Px0
= π−1(x0) −→ Px1

which is equivariant with the G-actions on these fibers.
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Proof. Such path γ also defines a smooth vector field along γ in M . Given a initial

point p0 in Px0
, a connection on P determines a unique horizontal lift of this vector

field, whose integral path γ̃ for this lifted vector field with the given initial condition

exists and is unique. Then we can define τγ(p0) = γ̃(1). Obviously, the horizontal lift

of γ beginning at p · g is γ̃ · g.

The splitting of the exact sequence

0 //g
υp //TpP

θp

``

dπp //Tπ(p)M

hp

ee
//0

determined by a connection is equivalent to a linear map

θp : TpP −→ g

in a G-equivariant fashion, such that θp is a left inverse of υp

θp ◦ υp = Id.

In fact, we have the following proposition which can be used as an equivalent definition

of a connection on P .

Proposition 4.8. A connection on a principal G-bundle π : P → M is equivalent to

a g-valued differential form θ ∈ Ω1(P, g) satisfying

1. For any p ∈ P , θp ◦ υp = Id

2. Under the right action of G, θ transforms via the adjoint representation G on g:

R∗
gθ = Ad(g−1) ◦ θ

for any g ∈ G.

Proof. A connection determines a G-equivariant decomposition of TpP into vertical

and horizontal subspaces

TpP = T vp P ⊕ T hp P
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where T hp P = Hp and T vp P = Tp(p·G). This decomposition induces the linear projection

πvp : TpP −→ T vp P.

The differential of the orbit map µp of G-action through p defines a linear isomorphism:

dµp(e) : TeG ∼= g −→ T vpP

Note that θp is the composition (dµp(e))
−1 ◦ πvp . We only need to verify the second

property of θp which comes from the following commutative diagram.

TpP
πv

p //

dRg(p)

��

T vp P

dRg(p)
��

g

Ad
g−1

��

dµp(e)

∼=oo

TpgP
πv

pg

// T vpgP g.
dµpg(e)

∼=oo

Here we can see that the first square commutes by the equivariant condition of connec-

tion, and the second square commutes via direct calculation:

[p exp(tX)]
_

dRg(p)

��

[exp(tX)]�

dµp(e)
oo

_

Ad
g−1

��
[p exp(tX)g] [g−1 exp(tX)g].

�

dµpg(e)
oo

Conversely, the kernel of θp defines a G-equivariant horizontal subspace of TpP .

Proposition 4.9. Any principal G-bundle π : P →M has a connection. The space of

all connections is an affine space whose underlying vector space can be identified with

Ω1(M,adP ), where adP is the associated bundle of P with the adjoint representation

Ad : G→ Aut(g).

Proof. First we show that any trivial principal bundle M × G admits a connection:

the obvious one given by the natural horizontal distribution, namely the tangent space

to the first factors, this is called the trivial connection.
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Cover M by open sets {Uα} over which P is trivialized. Choose the trivial con-

nection Aα for P |Uα . Let {ρα} be a partition of unity subordinate to the cover {Uα}.
Define

A =
∑

α

ραAα.

Then A is a connection on P .

Let θ1 and θ2 be two connections on (P,M ;π,G). Then (θ1 − θ2)p defines a linear

map

TpP −→ g

such that (θ1 − θ2)p ◦ υp = 0. Hence, ωp = (θ1 − θ2)p defines a linear map

Tπ(p)M −→ g

satisfying ωp·g = Adg−1 ◦ ωp, which implies that ω defines a section of T ∗M ⊗ adP .

In the proof, we use the fact that a G-equivariant map

s : P −→ F

defines a section of the associated bundle P ×G F on M .

Proposition 4.10. Let (E,M ;π,Rn) be an associated vector bundle of a principal G-

bundle P over M for a linear representation ρ : G → GL(n,R). Let θ ∈ Ω1(P, g) be a

connection on P . Then D = d+ θ defines a connection on E:

D : Ω0(M,E) −→ Ω1(M,E)

s 7→ ds+ θ · s

where we identify s ∈ Ω0(M,E) as a G-equivariant function: s : P → Rn.

Proof. A section s ∈ Ω0(M,E) can be viewed as a function s : P → Rn satisfying

s(p · g) = g−1 · s(p)
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from which we can show that (ds + θ · s)p vanishes on the vertical tangent space of P ,

the image of νp. For X ∈ g, the associated tangent vector νp(X) = Xp is given by

[p · exp(tX)]. This implies that

ds(p)(Xp) + θp(Xp) · s(p) = −Xp · s(p) + θp(νp(X)) · s(p) = 0.

On the other hand, we can prove that Ds = ds+ θ · s is G-equivariant:

(ds + θ · s)p·g = g−1 · ds(p) + (Adg−1 · θ) · g−1 · s(p)
= g−1(ds+ θ · s)p.

Hence, D = d+ θ defines a connection on E.

Remark 4.11. 1. Suppose that (f∗P,N ;π,G) is the pull-back principal G-bundle

from a principal G-bundle P over M for a smooth map f : N → M . If P has a

connection θ, then f∗θ defines a connection on f∗P .

2. (Induced connections)

(a) Let D1 and D2 be connections on vector bundles E1 and E2 over M re-

spectively, then D⊕ = D1 ⊕ D2 defines a connection on E1 ⊕ E2, and

D⊗ = D1 ⊗ I2 + I1 ⊗D2 defines a connection on E1 ⊗ E2.

(b) Given a connection D on a vector bundle π : E →M . Then

d < s∗, s >=< D∗s∗, s > + < s∗,Ds >

defines a connection D∗ on E∗, where s ∈ Ω0(M,E) and s∗ ∈ Ω0(M,E∗).

With respect to a local frame {ei} for E, we write D = d+A, and with respect

to the dual frame {e∗i } for E∗, we write D∗ = d+A∗. Then A∗ = −At.

3. In particular, a connection D on E → M induces a connection on

E ⊗ E∗ ∼= End(E): locally, D = d + A on E with respect to {ei}, then the

induced connection on End(E), with respect to {ei ⊗ e∗j}, is given

DEnd(E)u = du+Au− uA = du+ [A,u]

for a section u of End(E).
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4. A bundle metric < ·, · > on a rank n real vector vector bundle π : E → M is a

nowhere vanishing section on E∗ ⊗ E∗ ∼= Hom(E,E∗). In terms of local frame

{ei} of E, then a bundle metric can be written as

H =
∑

i,j

Hije
∗
i ⊗ e∗j

where Hij =< ei, ej >. We say that the metric <,> on E is compatible with a

connection D on E if

d < s1, s2 >=< Ds1, s2 > + < s1,Ds2 > .

Such connection is called an orthogonal connection, as the connection 1-form A,

under a local orthonormal frame {ei}, satisfies

A+At = 0,

hence A is a Lie(O(n))-valued 1-form. We can check that D is an orthogonal

connection on (E,<,>) if and only if the induced connection DE∗⊗E∗

satisfies

DE∗⊗E∗

(H) = 0

under the local frame {e∗i ⊗ e∗j}.

Similarly, a Hermitian metric on a rank n complex vector bundle is compatible

with a connection if and only if the connection 1-form under an orthonormal

complex local frame is a Lie(U(n))-valued 1-form, such a connection is sometimes

called a unitary connection.

5. As an example, a Riemannian metric g on a manifold M is a bundle metric on

the tangent bundle TM . The condition for an orthogonal connection ∇ on TM

is given by

∇g = 0.

Then a path γ(t) on M is called geodesic if γ(t) is parallel with respect to the

compatible connection ∇, which means,

∇γ̇(t)γ̇(t) = 0,

where γ̇(t) is the tangent vector at γ(t) determined by γ(t).
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4.2 Curvatures

Corresponding to three points of view for connections, we have three interpretations of

curvatures.

First, recall that a connection θ on a principal G-bundle P →M defines a covariant

derivative on the space of sections of the associated vector bundle E = P ×G V for a

representation of ρ : G→ GL(V ) on a vector space V :

D : Ω0(M,E) −→ Ω1(M,E).

This covariant derivative can be extended uniquely to a linear operator for all k > 0:

D : Ωk(M,E) −→ Ωk+1(M,E)

satisfying the graded Leibniz rule:

D(η ∧ λ) = dη ∧ λ+ (−1)pη ∧Dλ

for any η ∈ Ωp(M) and λ ∈ Ωk(M,E). Locally, write an element of Ωk(M,E) as

σ =
∑

i ωi ⊗ si for a local k-form ωi on M and a local section si of E, then define

Dσ =
∑

i

(
dωi ⊗ si + (−1)kωi ∧Dsi

)
.

Definition 4.12. The curvature of a connection D on a vector bundle E → M is

defined to be FD = D ◦D, which is an element in Ω2(M,End(E)).

Proposition 4.13. FD is a well-defined global section of Λ2T ∗M ⊗ End(E).

Proof. With respect to a local frame {eαi } for E over Uα, then D acting on a section

s =
∑

i sie
α
i over Uα can be written as Ds =

∑

i(dsi +
∑

j A
α
ijsj)e

α
i . Hence,

D ◦D(s) = D(
∑

i(dsi +
∑

j A
α
ijsj)e

α
i )

=
∑

i,k(−dsi ∧Aαki)eαk +
∑

i,j d(A
α
ijsj)e

α
i − ∑

i, j, kAαijsj ∧Aαkieαk
=

∑

i,j(dA
α +Aα ∧Aα)ijsje

α
i
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That is, over Uα, (D ◦D)|Uα = dAα +Aα ∧Aα is a gl(n,R)-valued 2-form on Uα. Over

any non-empty Uα ∩ Uβ, we have

Aα = g−1
αβAβgαβ + g−1

αβdgαβ .

Direct calculation shows that

dAα +Aα ∧Aα = g−1
αβ (dAβ +Aβ ∧Aβ)gαβ .

Hence, FD = {Fα = dAα +Aα ∧Aα} defines a global section of Λ2T ∗M ⊗End(E).

Therefore, the curvature of D measures the failure of

Ω0(M,E)
D //Ω1(M,E)

D //Ω2(M,E) · · · D //Ωn−1(M,E)
D //Ωn(M,E)

to be complex, unlike the de Rham complex.

From another point of view, we know that a connection D on a vector bundle E

defines a covariant derivative ∇. For two vector fields X and Y on M , then we can

establish the following identity:

FD(X,Y ) = ∇X ◦ ∇Y −∇Y ◦ ∇X −∇[X,Y ]. (18)

Using local expression FD = dA+A ∧A, we have

dA(X,Y ) = X(A(Y )) − Y (A(X)) −A([X,Y ])

and

(A ∧A)(X,Y ) = A(X)A(Y ) −A(Y )A(X)

as gl(n,R)-valued functions on M . On the other hand,

∇X ◦ ∇Y s = ∇X(dY s+A(Y )s)

= dX(dY s+A(Y )s) +A(X)(dY s+A(Y )s)

= X(Y (s)) +X(A(Y ))s +A(Y )X(s) +A(X)Y (s) +A(X)A(Y )s,

∇Y ◦ ∇Xs = ∇Y (dXs+A(X)s)

= dY (dXs+A(X)s) +A(Y )(dXs+A(X)s)

= Y (X(s)) + Y (A(X))s +A(X)Y (s) +A(Y )X(s) +A(Y )A(X)s,
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and

∇[X,Y ]s = [X,Y ]s+A([X,Y ])s.

Put all these together, we get the formula (18). In particular, if [X,Y ] = 0, then FD

measures the failure of ∇X and ∇Y to commute.

For a principal bundle (P,M ;π,G), a connection is a g-valued differential form

θ ∈ Ω1(P, g) satisfying

θp(Xp) = X ∈ g,

and

θp·g = Ad(g−1)θp.

Note that the Lie bracket of g induced a map on

∧ : Ω1(P, g) ⊗ Ω1(P, g) → Ω2(P, g)

satisfying θ ∧ θ(X,Y ) = [θ(X), θ(Y )] for two vector fields X and Y .

Proposition 4.14. Let θ ∈ Ω1(P, g) be a connection on a principal bundle (P,M ;π,G).

Then dθ + θ ∧ θ defines Fθ ∈ Ω2(M,adP ) such that

π∗(Fθ) = dθ + θ ∧ θ.

This 2-form is called the curvature of the connection θ, denoted by Fθ.

Proof. It is easy to see that dθ + θ ∧ θ is G-equivaraint. In order to complete the

proof, it is enough to show that for any p ∈ P and for any X,Y ∈ TpP with X vertical,

we have

(dθ + θ ∧ θ)(X,Y ) = 0. (19)

Extend X to a vertical vector field X on P associated to X ∈ g, then θ(X) = X is

constant. Using the connection θ, we can decompose Y into a vertical tangent vector

and a horizontal tangent vector. So we can verify (19) for Y vertical and horizontal

respectively. For Y vertical, extend Y to a vertical vector field Y on P associated to

Y ∈ g, then

dθ(X,Y ) = −θ([X,Y ]) = −θ([X,Y ]) = −[X,Y ],
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and

θ ∧ θ(X,Y ) = [θ(X), θ(Y )] = [X,Y ],

which imply (19) for Y vertical.

For Y is horizontal, we can also extend Y to a G-equivariant horizontal vector field

on P , then θ(Y ) = 0 and LX(Y ) = [X,Y ] = 0, hence

(dθ + θ ∧ θ)(X,Y ) = −θ([X,Y ]) = 0.

Remark 4.15. Let θ be a connection on a principal G-bundle π : P → M . Let s1

be a local section of P over an open set U in M (so P is trivialized over U). Then

s∗θ ∈ Ω1(U, g) is called the connection 1-form for (U, s1), and under the trivialization

over U given by s1:

Fθ,s1 = d(s∗1θ) + (s∗1θ ∧ s∗1θ).

For another trivialization s2 over U with s1 = s2 · g12, we obtain Fθ,s2 and

Fθ,s1 = g−1
12 Fθ,s2g12.

Hence, the curvature Fθ is given by a family of g-valued 2-form on M , {Fαθ }, for a

cover {Uα} over which P is trivialized by {ψα}, satisfying

Fαθ = g−1
αβF

β
θ gαβ ,

where {gαβ} are the transition functions of P under the trivialization {Uα, ψα}. This

gives another proof that Fθ ∈ Ω2(M,adP ).

Fix a connection θ on a principal bundle (P,M ;π,G). Then we have a lift map

on the space of vector fields on M to the space of horizontal vector fields on P . For

any vector field X on M , we denote by X̃ the unique horizontal lift of X. Then the

curvature of the connection θ evaluates on a pair of vector fields X and Y on M to give

Fθ(X,Y ) = [̃X,Y ] − [X̃, Ỹ ]. (20)
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Definition 4.16. We call a connection θ flat if Fθ = 0.

This provides the third interpretation of the curvature, that is, the obstruction to

integrating the horizontal distribution of the connection over two dimensional subman-

ifolds of the base, this relies on Frobenius’s Theorem. We should not elaborate here,

but only mention the holonomy of a connection, and to illustrate that the curvature

of a connection essentially measure the non-triviality of holonomy along a contractible

loop on the base.

4.2.1 The holonomy of a connection

Let θ be a connection on a principal G-bundle π : P → M . The holonomy of θ at a

point p ∈ P is a map from the loop space Ω(M,π(p)) of M based at π(p) to G:

hθ,p : Ω(M,π(p)) −→ G.

For a loop γ : [0, 1] →M with π(p) = γ(0) = γ(1), hθ,p(γ) is determined by taking the

horizontal life γ̃ starting from p and ending at

p · hθ,p(γ).

Since the horizontal lift is G-equivariant, we have the following consequences: the

holonomy map satisfies:

1. hθ,p·g = g−1hθ,pg.

2. hθ,p(γ
−1) = hθ,p(γ)

−1.

3. hθ,p(γ1γ2) = hθ,p(γ2)hθ,p(γ1), here γ1γ2 denotes the composition of two loops γ1

and γ2.

These imply that the image of the holonomy map is a subgroup of G and independent

of reference point up to conjugations.

In fact, we have the following holonomy theorem.
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Theorem 4.17. Let (P,M ;π,G) be a principal bundle with connected manifold M and

a connection θ. Let Holp(θ) be the subgroup of G obtained by the image of the honolomy

map hθ,p. Then the Lie algebra of Holp(θ) is spanned by the elements of the form

π∗p(Fθ)(X,Y )

for two arbitrary horizontal tangent vectors X and Y at p. In particular, a con-

nection θ is flat if and only if the holonomy map hθ,p factors through the map

Ω(M,π(p)) → π1(M,π(p)) by taking homotopy classes:

Ω(M,π(p))
hθ,p //

��

G

π1(M,π(p))

::ttttttttttt

Here π1(M,π(p)) is the fundamental group of M , the homotopy classes of loops based

at π(p).

Proof. We only give a sketch of the proof here. A detailed proof can be found in

Foundations of Differential Geometry, Vol I, by Kobayashi and Nomizu, page 89. For

any smooth contractible loop γ based at π(p), take a smooth retraction γt of γ to π(p),

then hθ,p provide a smooth path hθ,p(γt) in Holp(θ) joining hθ,p(γ) with the identity.

Let hθ,p be the set of vectors in g tangent to smooth curves in Holp(θ), a theorem of

Freudenthal implies that hθ,p is a Lie algebra of Holp(θ).

For any pair of horizontal vector fields X and Y ,

π∗p(Fθ)(X,Y ) = −θ([X,Y ]).

Note that dπp(X) and dπp(Y ) define a small rectangle [0, ǫ] × [0, ǫ] in Tπ(p)M , the

exponential map maps the four sides of this rectangle to a piecewise smooth loop

γXY ∈ Ω(M,π(p)), then a local calculation shows that

π∗p(Fθ)(X,Y ) = − lim
ǫ→0

log(hθ,p(γXY )

ǫ2
∈ hθ,p.
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5 Characteristic Classes

Just as the curvature to measure the obstruction to integrating horizontal distribution

of a connection over a two dimensional submanifolds of the base, we can use the cur-

vature to define certain cohomology classes in M to measure the non-triviality of the

bundle. These cohomology classes are called the characteristic classes, in the sense that

isomorphic bundles have same characteristic classes.

The first key identity we need is the so-called Bianchi identity.

Lemma 5.1. (Bianchi Identity) Let θ be a connection on a principal G-bundle

π : P → M . The curvature of θ, Fθ is an element of Ω2(M,adP ). Under the co-

variant derivative Dθ induced by θ, we have,

DθFθ = dFθ + [θ, Fθ] = 0.

Proof. Under the adjoint representation ad : g → gl(g), Fθ is a matrix of 2-form on

each open set where P is trivialized. Suppose that the trivialization over U is given by

a local section s, then s∗θ is a g-valued 1-form on U , still denoted by θ for convenience.

On U , we have

Fθ = dθ + θ ∧ θ.

We can compute directly

dFθ = dθ ∧ θ − θ ∧ dθ
= (Fθ − θ ∧ θ) ∧ θ − θ ∧ (Fθ − θ ∧ θ)
= Fθ ∧ θ − θ ∧ Fθ
= [Fθ, θ].

Hence, DθFθ = 0.

For a connection D on a vector bundle (E,M ;π,Rn), the curvature FD is an element

of Ω2(M,End(E)). Then the Bianchi identity reads as

D(FD) = 0.
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Here D = DEnd(E) acts on Ω2(M,End(E)) as the covariant derivative on End(E)

induced by D. Locally, D = d+A and FD = dA+A∧A over U where E is trivialized

by a local frame, then the Bianchi identity reads as

dFD + [A,FD] = 0.

Given a linear map

Φ : g ⊗ · · · ⊗ g
︸ ︷︷ ︸

k

−→ R

which is symmetric and invariant under the simultaneous adjoint action of G on g, we

can form

Φ(Fθ, · · · , Fθ) ∈ Ω2k(M,R).

Now we come to the main object of this course: the Chern-Weil theory, which

claims that Φ(Fθ, · · · , Fθ) is closed, and independent of the choice of connections.

Φ(Fθ, · · · , Fθ) is the characteristic class corresponding to Φ.

5.1 The Chern-Weil homomorphism

Let Ik(g∗) be the G-invariant (under the simultaneous conjugation action of G on g)

part of the k-multilinear symmetric functions on g. There is a product

Ik(g∗) ⊗ I l(g∗) −→ Ik+l(g∗)

defined by

Φ ∗ Ψ(v1, · · · , vk+l) =
1

k!l!

∑

σ∈Sk+l

Φ(vσ(1), · · · , vσ(k))Ψ(vσ(k+1), · · · , vσ(k+l)).

Let I∗(g∗) = ⊕k≥0Ik(g∗) (I0(g∗) = R). Notice that any homogeneous Φ ∈ I∗(g∗) is

determined by the polynomial function on g given by

v 7→ Φ(v, · · · , v),

whose inverse is called polarization. Hence, we can call I∗(g∗) the algebra of invariant

polynomials on g.
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Consider a principal bundle (P,M ;π,G) with a connection θ, and its curvature

Fθ ∈ Ω2(M,adP ). Suppose that P is defined by transition functions

{gαβ : Uα ∩ Uβ → G}

over an open cover {Uα} of M , then the connection θ is defined by a collection

{θα ∈ Ω1(Uα) ⊗ g} and its curvature is given by a collection

{Fα = dθα + θα ∧ θα}

satisfying

Fα = g−1
αβFβgαβ , dFα + [θα, Fα] = 0.

Then for any k ≥ 0 and Φ ∈ Ik(g∗), we have a well-defined 2k-form on M

Φ(Fθ) = Φ(Fθ, · · · , Fθ).

This is because that Φ is Ad-invariant and Fα = g−1
αβFβgαβ . The locally defined forms

{Φ(Fα)} can be glued together to get a global 2k-form on M , denoted by Φ(Fθ).

Theorem 5.2. The form Φ(Fθ) is closed, and its cohomology class does not depend

on the choice of connection and in particular depends only on the isomorphic class

of P . This cohomology class is denoted by cwP (Φ). The map (called the Chern-Weil

homomorphism)

cwP : I∗(g∗) −→ H∗(M,R)

is an algebra homomorphism and behaves naturally under the bundle pull-back, that is,

for a smooth map f : N →M , we have

cwf∗P = f∗ ◦ cwP .

For Φ ∈ I∗(g∗), cwP (Φ) is called the characteristic class of P corresponding to Φ.

Proof. Suppose that Φ is a homogeneous polynomial of degree k. As Φ is symmetric

and Ad-invariant, hence, we have

Φ(Adexp(tX)Y, · · · , Adexp(tX)Y ) = Φ(Y, · · · , Y )
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by differentiation, which implies that

Φ([X,Y ], Y, · · · , Y ) = 0

for any X,Y ∈ g. Now from Bianchi identity, we get

dΦ(Fθ) = Φ(dFθ, Fθ, · · · , Fθ)
= −kΦ([θ, Fθ], Fθ , · · · , Fθ) = 0.

Hence, Φ(Fθ) is a closed 2k-form on M .

Suppose that θ0 and θ1 are two connections on P , note that θi ∈ Ω1(P, g), then

θ̃(p,t) = (1 − t)θ0(p) + tθ1(p), for (p, t) ∈ P × [0, 1]

defines a connection on the principal G-bundle P × [0, 1] →M × [0, 1]. The curvature

of θ̃ is denoted by F̃ . Therefore, Φ(F̃ ) defines a closed 2k-form on M × [0, 1]. Notice

that the de Rham differential d on M × [0, 1] acting on Φ(F̃ ) is given by

0 = d(Φ(F̃ )) = dMΦ(F̃ ) +
∂

∂t
Φ(F̃ ) ∧ dt,

here dM is the de Rham differential on M .

The map ei : x → (x, i) defines an embedding of M as the boundary of M × [0, 1],

then

e∗0F̃ = Fθ0 , and e∗1F̃ = Fθ1 .

Now integrating d(Φ(F̃ )) = 0 over [0, 1], we get

−dM
∫ 1

t=0
Φ(F̃ ) =

∫ 1

t=0

∂

∂t
Φ(F̃ ) ∧ dt

= e∗1(Φ(F̃ )) − e∗0(Φ(F̃ ))

= Φ(Fθ1) − Φ(Fθ0).

Hence, Φ(Fθ1) is cohomologous to Φ(Fθ0).

It is straight forward to check that for Φ ∈ Ik(g∗) and Ψ ∈ I l(g∗),

(Φ ∗ Ψ)(Fθ) = Φ(Fθ) ∧ Ψ(Fθ),

which implies that cwP is an algebra homomorphism.

83



The naturality of cwP follows from that if θ is a connection on P with curva-

ture form Fθ ∈ Ω2(M,adP ), then f∗θ is a connection on f∗P with curvature form

f∗Fθ ∈ Ω2(N, f∗adP ), then

f∗Φ(Fθ) = Φ(f∗Fθ) = Φ(Ff∗θ).

Similarly, for the algebra of complex valued G-invariant polynomials on g, we have

a complex Chern-Weil homomorphism

I∗
C(g∗) −→ H∗(M,C).

For some classical Lie groups, we have some standard invariant polynomials. With

suitable normalizations, these characteristic classes are respectively the Pontrjagin

classes, the Euler class, the Chern classes. These characteristic classes are integral

classes, which follows from the universal characteristic classes on classifying spaces.

5.2 The Chern classes

Let (E,M ;π,Cn) be a complex vector bundle with a connection A and its curvature

form

FA ∈ Ω2(M,End(E)).

The corresponding principal bundle has structure group GL(n,C) with a connection

and its curvature form. Locally, FA is a gl(n,C)-valued 2-form on M .

Suppose that A ∈ gl(n,C) has eigenvalues λ1, · · · , λn, then

det(I +A) = det(










1 + λ1 0 · · · · · · 0

0 1 + λ2 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · · · · 1 + λn










=
∏n
i=1(1 + λi)

= 1 + σ1 + · · · + σ.
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Here

σ0(λ1, · · · , λn) = 1

σ1(λ1, · · · , λn) =
∑n

i=1 λi

σ2(λ1, · · · , λn) =
∑

i6=j λiλj
...

σ0(λ1, · · · , λn) = λ1λ2 · · ·λn.

(21)

Lemma 5.3. Any Ad-invariant polynomial Φ on gl(n,C) can be expressed as a poly-

nomial function of σ1, · · · , σn.

Proof. For any A ∈ gl(n,C), we can choose B so that the conjugation by B,

BAB−1 is a Jordan canonical form (an upper triangular matrix). Replacing B by

diag(ǫ, ǫ2, · · · , ǫn)B, let ǫ → 0, we can make the off diagonal entries approach to zero.

By the continuity of Φ, Φ(A) depends only on the diagonal entries of BAB−1, that

is, the eigenvalues of A. As a symmetric functions of these eigenvalues, Φ must be a

polynomial functions of σ1, · · · , σn.

Therefore, the algebra of Ad-invariant polynomials on gl(n,C) is generated by the

elementary symmetric functions

{σ0(λ1, · · · , λn), · · · , σn(λ1, · · · , λn)}

where {λ1, · · · , λn} are considered as the eigenvalue functions of a matrix. With suitable

normalization, we consider the complex valued Ad-adjoint invariant polynomials Ck

which are coefficients to λn−k in

det(λ · I − A

2πi
) =

∑

k

Ck(A, · · · , A)λn−k

where i =
√
−1 and A ∈ gl(n,C). The characteristic classes corresponding to

Ck ∈ Ik(gl(n,C)∗) is called the k-th Chern class of the principal GL(n,C)-bundle.

The k-th Chern class lies in H2k(M,C).

In particular, for a complex vector bundle (E,M ;π,Cn) with a connection A and

curvature form FA, the k-th Chern class of E has a differential representative given by
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the coefficient to λn−k in

det(λ · I − FA
2πi

),

which is exactly σk(
iFA
2π

).

Denote by ck(E) ∈ H2k(M,C) the k-th Chern class of E, note that c0(E) = 1 and

ck(E) = 0 for k > n. Then we have the following theorem, which characterizes the

Chern classes uniquely.

Theorem 5.4. For a complex vector bundle π : E → M of rank n. Define the total

Chern class to be the sum

c(E) = c0(E) + c1(E) + · · · + cn(E)

= det(I − FA
2πi

).

Then

1. ck(E) ∈ H2k(M,C) and c0(E) = 1.

2. If f : N →M is a smooth map, then

c(f∗E) = f∗(c(E)).

If π1 : E1 →M and π2 : E2 → M are two complex vector bundle of rank n1 and

n2 respectively. Then

c(E1 ⊕ E2) = c(E1) ∪ c(E2).

3. The canonical line bundle OCPn(−1) on CPn, coming from the natural C∗-bundle

Cn+1 − {0} → CPn and the natural action of C∗ = GL(1,C) on C. Then

c(OCPn(−1)) = 1 − hn

where hn is the canonical generator of H2(CPn,Z), that is, the restriction map

H2(CPn,Z) → H2(CP1,Z) maps hn to h1, and < h1, [CP1] >= 1 for CP1 with

the canonical orientation.
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Proof. The naturality follows from the definition of characteristic classes and the

Chern-Weil homomorphism. The total Chern class is multiplicative under direct sum,

this follows from the identity

det(I − FA1
⊕ FA2

2πi
) = det(In1×n1

− FA1

2πi
) · det(In2×n2

− FA2

2πi
).

To show that c1(OCPn(−1)) = −hn, by the naturality, we only need to show that

< c1(OCP1(−1)), [CP1] >= −1.

So we consider the principal C∗-bundle

π : C2 − {0} −→ CP1.

Let (z0, z1) be the coordinate on C2 − {0}. Then the complex valued 1-form

θ =
z0dz0 + z1dz1
|z0|2 + |z1|2

,

where the bar denotes the complex conjugation and |z|2 = zz, is a connection and the

curvature form is determined by dθ.

Let U1 = CP1 − {[0, 1] with its local coordinate z = z1/z0. Then we can calculate

that on U1

dθ =
dz ∧ dz

(1 + |z|2)2 .

Then on U1, c1(OCP1(−1) is represented by

− 1

2πi
· dz ∧ dz
(1 + |z|2)2 .

Therefore,

< c1(OCP1(−1)), [CP1] >= − 1

2πi

∫

C

dz ∧ dz
(1 + |z|2)2 .

Using the polar coordinate (r, t) on C, z = r · e2πit, then

< c1(OCP1(−1)), [CP1] >= −
∫ ∞

0

dr

(1 + r)2
= −1.
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If a complex vector bundle has a hermitian metric which is compatible to a con-

nection A, then the curvature form FA is a Lie(U(n))-valued 2-from, that is, FA is

skew-hermitian (FA = −FAt). Therefore,

det(I − FA
2πi

) = det(I − FA
2πi

).

Hence, any Hermitian vector bundle has its Chern classes in real cohomology groups

of M .

The connection A on a complex vector bundle induces a connection A on its con-

jugate bundle E, then FA = FA. Hence the Chern classes of the conjugate bundle E

of E is given by

ck(E) = (−1)kck(E). (22)

Similar argument shows that the Chern classes of the dual bundle E∗ is given by

ck(E
∗) = (−1)kck(E). (23)

Example 5.5. The total Chern class of the tangent bundle to CPn is equal to (1+hn)
n.

Proof. Let L = O(−1) be the canonical line bundle over CPn. Using the standard

hermitian metric on trivial complex vector bundle Cn+1 on CPn, we get

Cn+1 = L⊕ L⊥

where L⊥ is the orthogonal complement of L. If l is a complex line through origin

in Cn+1, and l⊥ is its orthogonal complement, then there is a local diffeomorphism

between Hom(l, l⊥) and the neighborhood of l ∈ CPn, via graphs of linear maps from

l to l⊥. This implies that

T (CPn) ∼= Hom(L,L⊥).

Hence, we have

T (CPn) ⊕ C ∼= Hom(L,L⊥ ⊕ L)

∼= Hom(L,Cn+1)

∼= L∗ ⊕ · · · ⊕ L∗
︸ ︷︷ ︸

n+1

.
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Thus the total Chern class of T (CPn) is given by

c(L∗ ⊕ · · · ⊕ L∗
︸ ︷︷ ︸

n+1

) = c(L∗)n+1 = (1 + hn)
n+1.

Remark 5.6. We can apply the Chern-Weil homomorphism to a Ad-invariant formal

power series to define a characteristic class, for example,

Tr(exp(
iA

2π
)).

Then the image of Tr(exp(
iA

2π
)) under the Chern-Weil homomorphism, for a complex

vector bundle E, is still well-defined, as Hk(M,C) = 0 for k > dimM . This is called the

Chern character, denoted by ch(E). Then the Chern character satisfies the following

nice formulae, for two complex vecotr bundles E1 and E2 over M , then,

1. ch(E1 ⊕ E2) = ch(E1) + ch(E2).

2. ch(E1 ⊗ E2) = ch(E1) · ch(E2).

The proof is left to readers.

5.3 The Pontrjagin Classes

For a real vector bundle E or a principal GL(n,R)-bundle P , we can also define its

characteristic classes, which is called the Pontrjagin classes.

Notice that every principal GL(n,R)-bundle can be reduced to a principal O(n)-

bundle, as the inclusion O(n) ⊂ GL(n,R) is a homotopy equivalence. In other word,

we can fix a bundle metric on E ( a smoothly varying fiberwise metric), and take the

orthogonal frame bundle and its orthogonal connection θ, then Fθ is a Lie(O(n))-valued

2-form.

For GL(n,R), the Lie algebra gl(n,R) is the Lie algebra of all matrices with Lie

bracket [A,B] = AB − BA. The Lie algebra of O(n), o(n), is a Lie subalgebra of
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gl(n,R), consisting of all skew-symmetric matrices. For any A ∈ o(n), A is conjugate

(in O(n)) to, if n = 2k,














0 λ1 · · · 0 0

−λ1 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 λk

0 0 · · · −λk 0














,

or if n = 2k + 1,















0 λ1 · · · 0 0 0

−λ1 0 · · · 0 0 0
...

... · · · ...
...

0 0 · · · 0 λk 0

0 0 · · · −λk 0 0

0 0 · · · 0 0 0
















.

Some elementary algebraic calculation leads to the following lemma.

Lemma 5.7. I∗(o(n)∗) ⊒ R[σ1(λ
2
1, · · · , λ2

[n/2]), · · · , σ[n/2](λ
2
1, · · · , λ2

[n/2])].

Consider the real-valued invariant polynomial Pk
2

, k = 0, · · · , n, defined by

det(λI − A

2π
) =

∑

k

Pk
2

(A, · · · , A)λn−k, for A ∈ ol(n,R).

Pk
2

(A) is called the k/2-th Pontrjagin polynomial, whose image under the Chern-Weil

homomorphism, for a principal GL(n,R)-bundle, is called the k/2-th Pontrjagin class.

For any A ∈ o(n), we have

det(λI − A

2π
) = det(λI +

A

2π
),

from which we get the restriction of Pk
2

to o(n), for k odd, is zero. One can check that

Pk
2

(A) = σk(λ
2
1(A/2π), · · · , λ2

[n/2](A/2π)).
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In particular, for a real vector bundle E of rank n, the k/2-th Pontrjagin class of

E is defined by

p k
2

(E) = cw(Pk
2

).

By the Chern-Weil theory, we know that the k/2-th Pontrjagin class of E is represented

by the 2k-form Pk
2

(FA) for a connection A on E.

Define the total Pontrjagin class of a real vector bundle E over M to be

p(E) = 1 + p1(E) + · · · + p[n/2] ∈ H∗(M,R).

Then we have the naturality for the Pontrjagin classes similar to the naturality for the

Chern classes.

Comparing the definition of the Chern classes with the definition of the Pontrjagin

classes,

p(E) = [det(I +
FA
2π

)], c(E ⊗R C) = [det(I +
iFA
2π

],

we get

pk(E) = (−1)kc2k(E ⊗R C), (24)

where E ⊗R C is the complexification of E under the inclusion map

GL(n,R) ⊂ GL(n,C). This relation also follows from the identity for symmetric poly-

nomials

σk(λ
2
1, · · · , λ2

m) = (−1)kσ2k(λ1,−λ1, · · · , λm,−λm).

Note that, as the transition function takes value in GL(n,R) ⊂ GL(n,C), we have

EC
∼= ĒC,

which implies that ck(EC) = 0 for k odd. Hence, we can also take (24) as another

definition of the Pontrjagin classes.

Next we want to study the Pontrjagin classes for the underlying real vector bundle

of a complex bundle and the Chern classes of the complex vector bundle.

Recall that, for a real vector space V , V ⊗R C can be identified with V ⊕ V with

complex structure

J(x, y) = (−y, x).
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For a complex vector space F , suppose that the underlying real vector space V = FR,

then V ⊗R C is canonically isomorphic to F ⊕ F as a complex vector space. The

isomorphism is given by the sum of two maps

V ⊕ V ∋ (x, y) 7→ (
x+ iy

2
,
−ix+ y

2
) + (

x− iy

2
,
ix+ y

2
)

where the first map is complex linear, and the second map is conjugate linear.

Let E be a complex vector bundle of rank n over M . Viewed as a real vector

bundle, we write it as ER. Then ER ⊗R C is a complex vector bundle of rank 2n, then

as complex vector bundles,

ER ⊗R C ∼= E ⊕ E.

Hence, from c(ER ⊗ C) = c(E)c(E), we have

1 − p1(ER) + p2(ER) − · · · + (−1)npn(ER)

=
(
1 + c1(E) + c2(E) + · · · + cn(E)

)(
1 − c1(E) + c2(E) − · · · + (−1)ncn(E)

)
.

As an application of this formula, we can calculate the Pontrjagin classes of of CPn,

pk(CPn) = pk(TCPn
R
). The Pontrjagin classes of CPn is determined by

1 − p1 + · · · + (−1)npk = c(TCPn)c(TCPn) = (1 − h2
n)
n+1.

Therefore, the total Pontrjagin class of CPn is equal to (1 + h2
n)
n+1. This implies that

for 1 ≤ k ≤ n/2,

pk(CPn) =




n+ 1

k



h2k
n ,

and pk(CPn) = 0 for k > n/2 as H4k(CPn) = 0.

Remark 5.8. A theorem of Novikove says that rational Pontrjagin classes are topo-

logical invariant. It follows that manifolds with different Pontrgajin classes are not

homeomorphic.

5.4 The Euler Class

Recall that an orientation of a real vector space is an equivalence class of ordered bases,

where two ordered bases are equivalence if and only if the base change is given by a

matrix of positive determinant.
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For a real vector bundle E of rank n, an orientation is a function which assigns

an orientation to each fiber of E such that the local trivialization can be chosen to be

orientation preserving. Hence E is orientable if and only if it admits a trivialization

with transition functions of positive determinant metrixs, which implies that the top

exterior bundle Λn(E) is trivial. In other word, an oriented real vector bundle is an

associated vector bundle of a principal SO(n)-bundle.

For a real vector bundle E, let gαβ : Uα∩Uβ → GL(n,R) be the transition function

associated to a trivialization of E over a cover {Uα} of M . We can get a sign function

ǫαβ : Uα ∩ Uβ → {±1} = Z2

satisfying the cocycle condition

ǫαβǫβγǫγα = 1.

Hence, we can define an element w1(E) ∈ H1(M,Z2) determined by the equivalent

class of [ǫαβ ]. This is called the first Stiefel-Whitney class of E.

Proposition 5.9. A real vector bundle E is orientable if and only if its first Stiefel-

Whitney class is trivial.

For an oriented real vector bundle E, the Euler class e(E) is defined in terms

of the Thom class and the Thom isomorphism, see Milnor and Stasheff’s book on

Characteristic Classes for details.

Theorem 5.10. For an oriented real vector bundle E of rank n. Denote E0 the comple-

ment of the zero section in E. There exists a unique cohomology class U ∈ Hn(E,E0; Z)

whose restriction to each fiber the standard generator given by the orientation. More-

over, there is an isomorphism

H∗(E) → H∗(E,E0; Z)

ω 7→ ω ∪ U.
(25)

The class U is called the Thom class of E. The isomorphism (25) is called the Thom

isomorphism.
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Definition 5.11. Let (E,M ;π,Rn) be an oriented real vector bundle. The unique

class e(E) ∈ Hn(M,Z) such that π∗e(E) is the image of the Thom class of E under

the natural map

Hn(E,E0; Z) → Hn(E,Z) ∼= Hn(M,Z)

U 7→ π∗e(E) 7→ e(E)

which is called the Euler class of E.

The Euler class of an oriented real vector bundle changes sign when the orientation

of the bundle is reversed. For an oriented real vector bundle with odd dimensional

fiber, there is an obvious orientation reversing bundle-automorphism. Hence, the Euler

class of an oriented vector bundle E with odd dimensional fiber satisfies 2e(E) = 0.

The Euler class can be applied to give the Gysin exact sequence see Milnor and

Stasheff’s book.

We will give a brief definition of Euler class of a principal SO(2n)-bundle in terms

of Chern-Weil theory.

The Lie algebra of SO(2n), so(2n), is isomorphic to o(2n), the Lie algebra of skew-

symmetric matrices. There is a special SO(2n)-invariant polynomial of degree n, called

the Pfaffian, given by, for A = (aij) ∈ so(2n),

Pf(A) =
1

2n(2π)nn!

∑

σ∈S2n

sgn(σ)aσ(1)σ(2) · · · aσ(2n−1)σ(2n).

For example, Pf(




0 a

−a 0



) =
a

2π
.

We need to show that Pf(A) is invariant under the conjugation action of SO(2n).

If g = (gij) ∈ SO(2n), then

gAg−1 = gAgt = (

2n∑

k1,k2=1

gik1ak1k2gjk2).

So

Pf(gAg−1) =
1

2n(2π)nn!

∑

k1,k2,··· ,k2n

ak1k2 · · · ak2n−1k2n

·∑σ∈S2n
sgn(σ)gσ(1)k1gσ(2)k2 · · · gσ2n−1k2n−1

gσ(2n)k2n
.
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The coefficient of ak1k2 · · · ak2n−1k2n
is the determinant of the matrix (gikj

). This de-

terminant is zero unless {k1, · · · , k2n} is a permutation of {1, · · · , 2n}. As det(g) = 1,

when {k1, · · · , k2n} is a permutation of {1, · · · , 2n}, we get the sign of the permutation

{k1, · · · , k2n}. Hence,

Pf(gAg−1) = Pf(A).

Notice that Pf(A) is not invariant under the action of O(n), as for g ∈ O(n) with

det(g) = −1, we get Pf(gAg−1) = −Pf(A).

For a SO(2n)-vector bundle E over M , we define the Euler class to be

e(E) = cw(Pf) ∈ H2n(M,R).

The Chern-Weil theorem gives the following theorem which uniquely determines

the Euler class.

Theorem 5.12. For a SO(2n)-vector bundle E over M , its Euler class e(E) satisfies

the following properties:

1. (Natuality) For a smooth map f : N →M , f∗(e(E)) = e(f∗(E)).

2. For a SO(2m)-vector bundle F and a SO(2n)-vector bundle E over M ,

e(F ⊕ E) = e(E) ∪ c(F ).

3. Let π : E → M be a U(n)-vector bundle. Under the inclusion U(n) ⊂ SO(2n)

visa the idnetification

Cn = R ⊕ iR ⊕ · · · ⊕ R ⊕ iR ∼= R2n,

we get a SO(2n)-vector bundle ER, then e(ER) = cn(E).

4. For a SO(2n)-vector bundle, e(E)2 = pn(E).

Proof. The naturality is obvious by Chern-Weil theorem. To show the second

property, we only need to prove that

Pf




A 0

0 B



 = Pf(A) · Pf(B).
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Notice that Pf is invariant under SO-action, it is enough to consider A and B of the

form

A =














0 a1 · · · 0 0

−a1 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 am

0 0 · · · −am 0














B =














0 b1 · · · 0 0

−b1 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 bn

0 0 · · · −bn 0














Then Pf(A) =
a1 · · · am
(2π)m

, Pf(B) =
b1 · · · bn
(2π)n

, and

Pf




A 0

0 B



 =
a1 · · · amb1 · · · bn

(2π)m+n
.

Similarly, we can show that

Pf(A)2 = det(− A

2π
),

for A ∈ o(2n), which implies Property 4.

The inclusion U(n) ⊂ SO(2n) induces a map on their Lie algebras:

i∗ : u(n) → o(2n) which sends the skew-hermitian matrix A = (aij + ibij) to the

matrix

i∗(A) =














a11 −b11 · · · a1n b1n

b11 a11 · · · b1n a1n

...
... · · · ...

...

an1 −bn1 · · · ann −bnn
bn1 an1 · · · bnn ann














.

We only need to prove that

Pf(i∗(A)) = Cn(A, · · · , A),

for any A ∈ u(n). As both sides are invariant polynomial on u(n), we can assume that

A is diagonalized, that is, A = diag(ia1, · · · , ian), then

Pf(i∗(A)) = (−1)n
a1 · · · an
(2π)2n

= det(− A

2πi
) = Cn(A, · · · , A).
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5.5 Appendix: Characteristic classes for classifying spaces

A characteristic class can be defined by any cohomology class w on a classifying space

of a Lie group G. The isomorphic class of a principal G-bundle over M is determined

by the homotopy class of map f : M → BG. The naturality property is automatically

satisfied if we define the characteristic class to be f∗(w) ∈ H∗(M). Thus, characteristic

classes of principal G-bundle correspond bijectively to cohomology classes of BG.

As an example, we will discuss those characteristic classes with Z2 coefficient for

real vector bundles. These are the Stiefel-Whitney classes.

We know that the classifying space for real vector bundles of rank n is the Grass-

mann manifold Grn(R
∞): the space of n-dimensional subspaces of R∞.

We assume some knowledge from algebraic topology about H∗(Grn(R
∞),Z2): the

cohomology ring H∗(Grn(R
∞),Z2) is a polynomial algebra over Z2 freely generated by

wi ∈ H i(Grn(R
∞),Z2) with 1 ≤ i ≤ n. The proof can be obtained by studying the cell

decomposition of the Grassmannian manifold.

For each real vector bundle (E,M ;π,Rn), we define the i-th Stiefel-Whitney class

of E to be

wi(E) = f∗(wi)

for the classifying map f : M → Grn(R
∞). The Stiefel-Whitney classes are uniquely

determined the following axioms, whose proof can be found in Milnor-Stasheff’s book.

Theorem 5.13. To each real vector bundle E → M , there is a unique sequence of

classes wi(E) ∈ H i(M,Z2) (called the Stiefel-Whitney classes of E), depending only on

the isomorphism type of E, such that

1. wi(f
∗(E)) = f∗(wi(E)) for a pull-back bundle f∗E.

2. (Whitney sum formula) w(E1⊕E2) = w(E1)∪w(E2) for the total Stiefel-Whitney

class w = 1 + w1 + w2 + · · · ∈ H∗(M,Z2).

3. wi(E) = 0 for i > rank(E).

4. For the canonical line bundle E → RP∞, w1(E) = α is a generator of

H1(RP∞,Z2).
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Similar to the calculation of the total Chern class for complex projective spaces, we

have the total Stiefel-Whitney class for real projective class:

w(RPn) = (1 + α)n.

From which, we get, w(RPn) = 1 if and only if n+ 1 is a power of 2.

We conclude this section by stating the following theorem of H. Cartan.

Theorem 5.14. Let G be a compact Lie group. Then the Chern-Weil homomorphism

is an isomorphism:

I∗(g∗) ∼= H∗(BG,R).
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