Sample menu:

Articles written by Creamer, D.B.

  1. Creamer, D.B.. "On using polynomial chaos for modeling uncertainty in acoustic propagation" Journal of Acoustical Society of America. 119 (4). APR 2006. pp. 1979--1994.

    The use of polynomial chaos for incorporating environmental variability into propagation models is investigated in the context of a simplified one-dimensional model, which is relevant for acoustic propagation when the random sound speed is independent of depth. Environmental variability is described by a spectral representation of a stochastic process and the chaotic representation of the wave field then consists of an expansion in terms of orthogonal random polynomials. Issues concerning implementation of the relevant equations, the accuracy of the approximation, uniformity of the expansion over the propagation range, and the computational burden necessary to evaluate different field statistics are addressed. When the correlation length of the environmental fluctuations is small, low-order expansions work well, while for large correlation lengths the convergence of the expansion is highly range dependent and requires high-order approximants. These conclusions also apply in higher-dimensional propagation problems.


  2. Creamer, D.B.. "On closure schemes for polynomial chaos expansions of stochastic differential equations" Waves in Random and Complex Media. 18 (2). MAY 2008. pp. 197--218.

    The propagation of waves in a medium having random inhomogeneities is studied using polynomial chaos (PC) expansions, wherein environmental variability is described by a spectral representation of a stochastic process and the wave field is represented by an expansion ill orthogonal random polynomials of the spectral components. A different derivation of this expansion is given using functional methods, resulting in a smaller set of equations determining the expansion coefficients, also derived by others. The connection with the PC expansion is new and provides insight into different approximation schemes for the expansion, which is in the correlation function, rather than the random variables. This separates the approximation to the wave function and the closure of the coupled equations (for approximating the chaos coefficients), allowing for approximation schemes other than the Usual PC truncation, e.g. by an extended Markov approximation. For small correlation lengths of the medium, low-order PC approximations provide accurate coefficients of ally order. This is different from the usual PC approximation, where, for example, the mean field might be well approximated while the wave function (which includes other coefficients) would not be. These ideas are illustrated in a geometrical optics problem for a medium with a simple correlation function.