Quantifying Uncertainty
Griebel, M.. "Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences" Computing. 61
(2).
1998.
pp. 151--179.
Gerstner, T. and Griebel, M.. "Numerical integration using sparse grids" Numer. Alg.. 18
(3-4).
1998.
pp. 209--232.
We present new and review existing algorithms for the numerical integration of multivariate functions defined over d-dimensional cubes using several variants of the sparse grid method first introduced by Smolyak [49]. In this approach, multivariate quadrature formulas are constructed using combinations of tensor products of suitable one-dimensional formulas. The computing cost is almost independent of the dimension of the problem if the function under consideration has bounded mixed derivatives. We suggest the usage of extended Gauss (Patterson) quadrature formulas as the one-dimensional basis of the construction and show their superiority in comparison to previously used sparse grid approaches based on the trapezoidal, Clenshaw-Curtis and Gauss rules in several numerical experiments and applications. For the computation of path integrals further improvements can be obtained by combining generalized Smolyak quadrature with the Brownian bridge construction.
Gerstner, T. and Griebel, M.. "Dimension-adaptive tensor-product quadrature" Computing. 71
(1).
SEP 2003.
pp. 65--87.
We consider the numerical integration of multivariate functions defined over the unit hypercube. Here, we especially address the high-dimensional case, where in general the curse of dimension is encountered. Due to the concentration of measure phenomenon, such functions can often be well approximated by sums of lower-dimensional terms. The problem, however, is to find a good expansion given little knowledge of the integrand itself. The dimension-adaptive quadrature method which is developed and presented in this paper aims to find such an expansion automatically. It is based on the sparse grid method which has been shown to give good results for low- and moderate-dimensional problems. The dimension-adaptive quadrature method tries to find important dimensions and adaptively refines in this respect guided by suitable error estimators. This leads to an approach which is based on generalized sparse grid index sets. We propose efficient data structures for the storage and traversal of the index sets and discuss an efficient implementation of the algorithm. The performance of the method is illustrated by several numerical examples from computational physics and finance where dimension reduction is obtained from the Brownian bridge discretization of the underlying stochastic process.