Quantifying Uncertainty
Wan, X. and Karniadakis, G.E.. "An adaptive multi-element generalized Polynomial Chaos method for stochastic differential equations" J. Comput. Phys.. 209
(2).
2005.
pp. 617--642.
We formulate a Multi-Element generalized Polynomial Chaos (ME-gPC) method to deal with long-term integration and discontinuities in stochastic differential equations. We first present this method for Legendre-chaos corresponding to uniform random inputs, and subsequently we generalize it to other random inputs. The main idea of ME-gPC is to decompose the space of random inputs when the relative error in variance becomes greater than a threshold value. In each subdomain or random element, we then employ a generalized polynomial chaos expansion. We develop a criterion to perform such a decomposition adaptively, and demonstrate its effectiveness for ODEs, including the Kraichnan-Orszag three-mode problem, as well as advection-diffusion problems. The new method is similar to spectral element method for deterministic problems but with h-p discretization of the random space
Xiu, D. and Karniadakis, G.E.. "Modeling uncertainty in flow simulations via generalized Polynomial Chaos" J. Comput. Phys.. 187
(1).
2003.
pp. 137--167.
We present a new algorithm to model the input uncertainty and its propagation in incompressible flow simulations. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as trial basis to represent the random space. A standard Galerkin projection is applied in the random dimension to obtain the equations in the weak form. The resulting system of deterministic equations is then solved with standard methods to obtain the solution for each random mode. This approach can be considered as a generalization of the original polynomial chaos expansion, first introduced by Wiener [Am. J. Math. 60 (1938) 897]. The original method employs the Hermite polynomials (one of the 13 members of the Askey scheme) as the basis in random space. The algorithm is applied to micro-channel flows with random wall boundary conditions, and to external flows with random freestream. Efficiency and convergence are studied by comparing with exact solutions as well as numerical solutions obtained by Monte Carlo simulations. It is shown that the generalized polynomial chaos method promises a substantial speed-up compared with the Monte Carlo method. The utilization of different type orthogonal polynomials from the Askey scheme also provides a more efficient way to represent general non-Gaussian processes compared with the original Wiener-Hermite expansions.
Le Maitre, O.P., Knio, O.M., Najm, H.N., and Ghanem, R.G.. "Uncertainty propagation using Wiener-Haar expansions" J. Comput. Phys.. 197
(1).
2004.
pp. 28--57.
An uncertainty quantification scheme is constructed based on generalized Polynomial Chaos (PC) representations. Two such representations are considered, based on the orthogonal projection of uncertain data and solution variables using either a Haar or a Legendre basis. Governing equations for the unknown coefficients in the resulting representations are derived using a Galerkin procedure and then integrated in order to determine the behavior of the stochastic process. The schemes are applied to a model problem involving a simplified dynamical system and to the classical problem of Rayleigh-Bénard instability. For situations involving random parameters close to a critical point, the computational implementations show that the Wiener-Haar (WHa) representation provides more robust predictions that those based on a Wiener-Legendre (WLe) decomposition. However, when the solution depends smoothly on the random data, the WLe scheme exhibits superior convergence. Suggestions regarding future extensions are finally drawn based on these experiences.
Ganapathysubramanian, B. and Zabaras, N.. "Sparse grid collocation schemes for stochastic natural convection problems" J. Comput. Phys.. 225
(1).
2007.
pp. 652--685.
In recent years, there has been an interest in analyzing and quantifying the effects of random inputs in the solution of partial differential equations that describe thermal and fluid flow problems. Spectral stochastic methods and Monte-Carlo based sampling methods are two approaches that have been used to analyze these problems. As the complexity of the problem or the number of random variables involved in describing the input uncertainties increases, these approaches become highly impractical from implementation and convergence points-of-view. This is especially true in the context of realistic thermal flow problems, where uncertainties in the topology of the boundary domain, boundary flux conditions and heterogeneous physical properties usually require high-dimensional random descriptors. The sparse grid collocation method based on the Smolyak algorithm offers a viable alternate method for solving high-dimensional stochastic partial differential equations. An extension of the collocation approach to include adaptive refinement in important stochastic dimensions is utilized to further reduce the numerical effort necessary for simulation. We show case the collocation based approach to efficiently solve natural convection problems involving large stochastic dimensions. Equilibrium jumps occurring due to surface roughness and heterogeneous porosity are captured. Comparison of the present method with the generalized polynomial chaos expansion and Monte-Carlo methods are made.